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Abstract

An ordered set partition of [n] = {1, 2, . . . , n} is a partition with an ordering on the parts.
let OPn,k be the set of ordered set partitions of [n] with k blocks, Godbole, Goyt, Herdan
and Pudwell [4] defined OPn,k(σ) to be the set of ordered set partitions in OPn,k avoiding a
permutation pattern σ and obtained the formula for |OPn,k(σ)| when the pattern σ is of length
2. Later, Chen, Dai and Zhou in [2] found a formula algebraically for |OPn,k(σ)| when the
pattern σ is of length 3.

In this paper, we define a new pattern avoidance for the set OPn,k, calledWOPn,k(σ), which
includes the questions proposed in [4]. We obtain formulas for |WOPn,k(σ)| combinatorially for
any σ of length ≤ 3. We also study 3 kinds of descent statistics that we defined on OPn,k(σ)
for σ of length ≤ 3.
Keywords: permutations, ordered set partitions, pattern avoidance, bijections, Dyck paths

1 Introduction

In [4], Godbole, Goyt, Herdan, and Pudwell begin the study of patterns in ordered set partitions.
In particular, they studied the number of ordered set partitions which avoid certain types of per-
mutations of length 2 and 3. A partition π of [n] = {1, . . . , n} is a family of nonempty, pairwise
disjoint subsets B1, B2, . . . , Bk of [n] called parts such that

⋃k
i=1Bi = [n]. We let `(π) denote the

number of parts in π and |π| = n denote the size of π. We let min(Bi) denote the minimal element
of Bi and we use the convention that we order the parts so that min(B1) < · · · < min(Bk). To
simplify notation, we shall write π as B1/ . . . /Bk. Thus we would write π = 134/268/57 for the
set partition π of [8] with parts B1 = {1, 3, 4}, B2 = {2, 6, 8}, and B3 = {5, 6}. An ordered set
partition with underlying set partition π is just a permutation of the parts of π, δ = Bσ1/ . . . /Bσk
for some permutation σ in the symmetric group Sk . For example, δ = 57/134/268 is an ordered
set partition of [8] with underlying set partition π = 134/268/57. Given an ordered set partition
δ = Bσ1/ . . . /Bσk , we let the word of δ, w(δ), be the word obtained from δ by removing all the
slashes. For example, if δ = 57/134/268, then w(δ) = 57134268. We let OPn denote the set of
ordered set partitions of [n] and OPn,k denote the set of ordered set partitions of [n] with k parts.
If b1, . . . bk are positive integers, then we let

1. OP [b1,...,bk] denote the set of ordered set partitions B1/ . . . /Bk of b1 + · · · + bk such that
|Bi| = bi for i = 1, . . . , bk,

2. OPn,{b1,...,bk} denote the set of ordered set partitions π ∈ OPn such that the size of any part
in π is an element of {b1, . . . , bk}, and
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3. OP〈bβ11 ...b
βk
k 〉

denote the set of ordered set partitions π of
∑k

i=1 βibi which has βi parts of size

bi for i = 1, . . . , k.

Note that ⋃
n≥0
OPn,{b1,...,bk} =

⋃
β1≥0,...,βk≥0

OP〈bβ11 ...b
βk
k 〉
.

Clearly, OP [b1,...,bk] =
(

n
b1,...,bk

)
, if b1 + · · ·+ bk = n.

Given a sequence of distinct positive integers w = w1 . . . wn, we let red(w) denote the permutation
in Sn obtained from w by replacing the i-th smallest letter in w by i. For example, red(4592) =
2341. Following [4], we say that permutation σ = σ1 . . . σj occurs in an ordered set partition
δ = B1/ . . . /Bk if and only if there exists 1 ≤ i1 < · · · < ij ≤ k and bij ∈ Bij such that
red(bi1 . . . bij ) = σ and δ avoids σ if σ does not occur in δ. For example, if δ = 57/134/268, then
213 occurs in δ since red(518) = 213, but δ avoids 123 because every element in the first part {5, 7}
of δ is bigger than every element in the second part {1, 3, 4} of δ. If α is a permutation in Sj ,
then we let OPn(α) denote the set of odered set partions of [n] that avoid α. We can then define
OPn,k(α), OP [b1,...,bk](α), OPn,{b1,...,bk}(α), and OP〈bβ11 ...b

βk
k 〉

(α) in a similar manner. We let

opn(α) = |OPn(α)|,
opn,k(α) = |OPn,k(α)|,

op[b1,...,bk](α) = |OP [b1,...,bk](α)|, and

op〈bβ11 ...b
βk
k 〉

(α) = |OP〈bβ11 ...b
βk
k 〉

(α)|.

Godbole, Goyt, Herdan, and Pudwell [4] proved a number of interesting results about this quantities.
For example, they showed that

opn,k(σ) = opn,k(123)

for all permutations σ of length 3. They also proved that

opn,3(123) = opn,3(123) =

(
n2

8
+

3n

8
− 2

)
2n + 3

and

opn,n−1(123) =
3(n− 1)2

(
2n−2
n−1

)
n(n+ 1)

.

Later, Chen, Dai, and Zhou [2] proved that

1 +
∑
n≥1

tn
n∑
k=1

opn,k(123)xk =
−x+ 2xt− 2t+ 2t2x+ 2t2 + x

√
1− 4xt− 4t+ 4t2x+ 4t2

2t(x+ 1)2(t− 1)
. (1)

The goal of this paper is to study an alternative notion of pattern avoidance in ordered set partitions.
Given an ordered set partition δ = B1/ . . . /Bk of [n], let w(δ) = w1 . . . wn denote the word of δ.
Then we say that a permutation α = α1 . . . αj ∈ Sj occurs in the word of δ if there exists
1 ≤ i1 < · · · < ij ≤ n such that red(wi1 . . . wij ) = α. Thus α occurs in the word of δ if α classically
occurs in w(δ). We say that an ordered set partition δ word-avoids α if α does not occur in
the word of δ. For example, if δ = 57/134/268, we saw that δ avoids 123 in the sense of [4], but
clearly 123 occurs in the word of δ since red(134) = 123. Then we let WOPn(α) denote the set of
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ordered set partitions which word-avoid α. Similarly, we can define WOPn,k(α), WOP [b1,...,bk](α),
and WOP〈bβ11 ...b

βk
k 〉

(α). Then we let

wopn(α) = |WOPn(α)|,
wopn,k(α) = |WOPn,k(α)|,

wop[b1,...,bk]
(α) = |WOP [b1,...,bk](α)|, and

wop〈bα11 ...b
αk
k 〉

(α) = |WOP〈bα11 ...b
αk
k 〉

(α)|.

We will also study the corresponding generating functions

WOPα(t) = 1 +
∑
n≥1

wopn(α) tn,

WOPα(x, t) = 1 +
∑
n≥1

tn
n∑
k=1

wopn,k(α) xk, and

WOPα,{b1,...,bn}(x, t, q1, q2, . . . qn) =
∑
β1≥0
· · ·
∑
βk≥0

wop〈bβ11 ...b
βk
k 〉

(α) t
∑k
i=1 biβix

∑k
i=1 βi qβ11 q

β2
2 · · · q

βk
k .

Note that wopn,k(321) = opn,k(321). That is, if 321 occurs in the word of an ordered set partition
δ, then the occurrences of 3, 2, and 1 must have been in different parts of the partition δ so that
321 would occur in δ in the sense of Godbole, Goyt, Herdan, and Pudwell. However, for other
σ ∈ S3, it is not the case that wopn,k(σ) = opn,k(σ). In fact, it will follow from the results of the
this paper that we have the following table of wopn(σ) for σ ∈ S3,

n wopn(123) wopn(132) = wopn(231) = wopn(312) = wopn(213) wopn(321)

0 1 1 1

1 1 1 1

2 3 3 3

3 9 11 12

4 31 45 56

5 113 197 284

6 431 903 1516

7 1697 4279 8384

8 6487 20793 47600

9 28161 103049 275808

10 117631 518859 1624352

We shall also study refinements of these generating functions by descents. In fact, there are three
different natural notions of descents in an ordered set partition π = B1/ . . . /Bk. That is, we let
des(π) be the number of descents in the word of π, w(π) = w1 . . . wn. Thus des(π) = |{i : wi >
wi+1}|. Given two consecutive parts Bi and Bi+1, we write Bi >p Bi+1 if every element of Bi is
greater than every element in Bi+1 and we write Bi >min Bi+1 if the minimal element of Bi is
greater than the minimal element of Bi+1. We shall call elements i such that Bi >p Bi+1 part-
descents and elements i where Bi >min Bi+1 min-descents. It is easy to see that if Bi >p Bi+1,
then Bi >min Bi+1. However, if π = 2/13, then 2 >min 13 but it is not the case that 2 >p 13. We
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let bimin be the minimum of block Bi and bimax be the maximum of block Bi, Then we define

des(π) = |{i : w(π)i > w(π)i+1}| = |{i : bimax > bi+1min}|,
pdes(π) = |{i : Bi >p Bi+1}| = |{i : bimin > bi+1max}| and

mindes(π) = |{i : Bi >min Bi+1}| = |{i : bimin > bi+1min}|.

These three statistics are not equi-distributed on ordered set partitions as the following table for
ordered set partitions of 3 shows.

π des(π) pdes(π) mindes(π)

123 0 0 0

1/23 0 0 0

12/3 0 0 0

1/2/3 0 0 0

13/2 1 0 0

1/3/2 1 1 1

2/13 1 0 1

2/1/3 1 1 1

23/1 1 1 1

2/3/1 1 1 1

3/12 1 1 1

3/1/2 1 1 1

3/2/1 2 2 2

For each type of generating function above, we consider the refined generating function where we
keep track of the number of descents of each type. For example, we shall study the following
generating functions,

WOPdes
α (x, y, t) = 1 +

∑
n≥1

tn
∑

π∈OPn(α)

x`(π)ydes(π),

WOPpdes
α (x, y, t) = 1 +

∑
n≥1

tn
∑

π∈OPn(α)

x`(π)ypdes(π), and

WOPmindes
α (x, y, t) = 1 +

∑
n≥1

tn
∑

π∈OPn(α)

x`(π)ymindes(π).

Similarly, we shall study

WOPdes
α,{b1,...,bk}(x, y, t, q1, . . . , qn) =

∑
β1≥0,...,βk≥0,

∑
π∈WOP

〈bβ11 ...b
βk
k
〉
(α)

t|π|x`(π)ydes(π)qβ11 · · · q
βk
k ,

WOPpdes
α,{b1,...,bk}(x, y, t, q1, . . . , qn) =

∑
β1≥0,...,βk≥0,

∑
π∈WOP

〈bβ11 ...b
βk
k
〉
(α)

t|π|x`(π)ypdes(π)qβ11 · · · q
βk
k , and

WOPmindes
α,{b1,...,bk}(x, y, t, q1, . . . , qn) =

∑
β1≥0,...,βk≥0,

∑
π∈WOP

〈bβ11 ...b
βk
k
〉
(α)

t|π|x`(π)ymindes(π)qβ11 · · · q
βk
k .

The main focus of this paper is the study the generating functions described above where α is S2 or
S3. One advantage of our notion of word-avoidance in ordered set partitions is that we can employ
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standard techniques from the theory of generating functions and the Lagrange Inversion Theorem
to give us nice answers. For example, we shall show that

WOP132(x, t) =
t+ 1−

√
(t+ 1)2 − 4t(x+ 1)

2t(1 + x)
, (2)

wopn,k(132) =
1

k

(
n− 1

k − 1

)(
n+ k

k − 1

)
,

and

wop〈bβ11 ...b
βk
k 〉

(132) =
1

n

(
k

β1, . . . , βk

)(
n+ k

n− 1

)
where n =

∑k
i=1 biβi and k =

∑k
i=1 βi.

Similarly, we shall show that

WOPdes
132(x, y, t) =

(1 + 2yt+ xyt− t− xt)−
√

((1 + 2yt+ xyt− t− xt))2 − 4t(1− t+ ty)(x+ yx)

2t(y + xy)

and that

wopn,k(y, 132) =
1

k

(
n− 1

k − 1

) k−1∑
j−0

(
k

j

)(
n− 1

k − 1− j

)
yk−1−j

where wopn,k(y, 132) =
∑

π∈OPn,k(132) y
des(w(π)).

2 Preliminaries

The structure of elements in WOPn(12) and WOP(21) are quite easy to describe. For example,
if π ∈ WOPn(12), then the word of π must be n(n − 1) . . . 21 and hence π = n/n − 1/ . . . /1.
Similarly, if π ∈ WOPn(21), then the word of π must be 12 . . . (n − 1)n and hence π must be of
the form B1/B2/ . . . /Bk where for each i = 1, . . . , k− 1, all the elements of Bi are smaller than all
the elements of Bi+1. It follows that opn,k(21) =

(
n−1
k−1
)

because to specify an ordered set partition
π ∈ OPn,k(21) with k parts, we need only specify where we need to place k − 1 /’s in the n − 1
spaces between the letters of 1 . . . n.

Thus

WOPdes
12 (x, y, t) = 1 +

∑
n≥1

yn−1xntn = 1 +
xt

1− xyt
(3)

and WOPdes
12 (x, y, t) = WOPpdes

12 (x, y, t) = WOPmindes
12 (x, y, t). Also

WOPdes
21 (x, y, t) = 1 +

∑
n≥1

tn
n∑
k=1

(
n− 1

k − 1

)
xk

= 1 + xt
∑
n≥1

tn−1
n∑
k=1

(
n− 1

k − 1

)
xk−1

= 1 + xt
∑
n≥1

tn−1(1 + x)n−1

= 1 +
xt

1− t(1 + x)
. (4)
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and WOPdes
21 (x, y, t) = WOPpdes

21 (x, y, t) = WOPmindes
21 (x, y, t).

Next consider the generating functions WOPdes
α (x, y, t), WOPpdes

α (x, y, t), and WOPmindes
α (x, y, t)

when α ∈ Sj for j ≥ 3. There are some obvious symmetries in our situation. Recall that for a
permutation σ = σ1 . . . σn, the reverse of σ, σr, is defined by σr = σn . . . σ1 and the complement of
σ, σc, is defined by σc = (n + 1 − σ1) . . . (n + 1 − σn). It is easy to see that des(σ) = des((σr)c).
We can define reverse and complement on ordered set partitions as well. That is, suppose that
π = B1/ . . . /Bk is an ordered set partition of [n]. Then if Bi = {ai1 < ai2 < · · · < aij}, we

let complement of Bi, B
c
i = {(n + 1 − aij) < · · · < (n + 1 − ai2) < (n + 1 − ai1)}. Then we

define the reverse of π, πr, to be Bk/ . . . /B1 and the complement of π, πc, to be Bc
1/ . . . /B

c
k.

Thus (πr)c = Bc
k/ . . . /B

c
1. It is easy to see that if w(π) = w1 . . . wn, then the word of (πr)c

is (n + 1 − wn) . . . (n + 1 − w1) = (w(π)r)c Similarly it is easy to see that if Bi >p Bi+1, then
Bc
i+1 >p B

c
i . Thus the operations of reverse-complement show that∑

π∈OPn,k(α)

x`(π)ydes(π) =
∑

π∈OPn,k((αr)c)

x`(π)ydes(π) and

∑
π∈OPn,k(α)

x`(π)ypdes(π) =
∑

π∈OPn,k((αr)c)

x`(π)ypdes(π).

It follows that for all 1 ≤ b1 < · · · < bs,

WOP∗132(x, y, t) = WOP∗213(x, y, t),
WOP∗231(x, y, t) = WOP∗312(x, y, t),

WOP∗132,{b1,...,bs}(x, y, t, q1, . . . , qs) = WOP∗213,{b1,...,bs}(x, y, t, q1, . . . , qs), and

WOP∗231,{b1,...,bs}(x, y, t, q1, . . . , qs) = WOP∗312,{b1,...,bs}(x, y, t, q1, . . . , qs).

where ∗ is either des or pdes.

Reverse-complement does not always preserve mindes. For example, one can easily see from the
table of values of mindes(π) for π ∈ OP3 that, it is not the case that∑

π∈OP3(132)

x`(π)ymindes(π) =
∑

π∈OP3(213)

x`(π)ymindes(π).

In general, reverse and complement by themselves do not preserve these generating functions. For
example, it follows from the same table that∑

π∈OPn(123)

x`(π)ydes(π) 6=
∑

π∈OPn(321)

x`(π)ydes(π),

∑
π∈OPn(123)

x`(π)ypdes(π) 6=
∑

π∈OPn(321)

x`(π)ypdes(π), and

∑
π∈OPn(123)

x`(π)ymindes(π) 6=
∑

π∈OPn(321)

x`(π)ymindes(π).

Our next theorem will show that

WOPdes
312(x, y, t) = WOPdes

213(x, y, t)
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and
WOPmindes

312 (x, y, t) = WOPmindes
213 (x, y, t).

Thus there are only three different generating functions of the form WOPdes
α (x, y, t) for α ∈ S3.

Similarly, our next theorem will show that for all 1 ≤ b1 < · · · < bs,

WOPdes
213,{b1,...,bs}(x, y, t, q1, . . . , qs) = WOPdes

312,{b1,...,bs}(x, y, t, q1, . . . , qs)

and
WOPmindes

213,{b1,...,bs}(x, y, t, q1, . . . , qs) = WOPmindes
312,{b1,...,bs}(x, y, t, q1, . . . , qs).

Theorem 1. There is a bijection φn :WOPn(312)→WOPn(213) such that for all π = B1/ . . . /Bk ∈
WOPn(213), φn(π) = C1/ . . . /Ck ∈ WOPn(312) where |Bi| = |Ci| for i = 1, . . . , k, 1 in posi-
tion k in w(π) if and only if 1 is in position k in w(φn(π)), des(π) = des(φn(π)), Des(w(π)) =
Des(w(φn(π))), and mindes(π) = mindes(φn(π)).

Proof. We shall define φn : WOPn(312) → WOPn(213) by induction on n. For 1 ≤ n ≤ 2, we
let φn be the identity. Now assume that we have defined φk : WOPk(312) → WOPk(213) for
k ≤ n − 1. We classify the ordered set partitions π in WOPn(312) by the position of 1 in w(π).
First suppose that 1 occurs in position 1 in w(π). If 1 in a part by itself, then π is of the form
1/B2/ . . . /Bk for some k ≥ 2. In this case, if we subtract 1 for each element in B2/ . . . /Bk to obtain
a set partition π∗ = B∗2/ . . . /B

∗
k in WOPn−1(312). Then let φn−1(B

∗
2/ . . . /B

∗
k) = C∗2/ . . . /C

∗
k and

let C2/ . . . /Ck be result of adding 1 to each element of C∗2/ . . . /C
∗
k . It is easy to see that if we let

φn(1/B2/ . . . /Bk) = 1/C2/ . . . /Ck, then 1/C2/ . . . /Ck ∈ WOP1(213), |Bi| = |Ci| for i = 2, . . . , k,
des(1/B2/ . . . /Bk) = des(1/C2/ . . . /Ck), Des(w(1/B2/ . . . /Bk)) = Des(w(1/C2/ . . . /Ck)), and
mindes(1/B2/ . . . /Bk) = mindes(1/C2/ . . . /Ck). If 1 is not in a part by itself, then π is of the
form B1/ . . . /Bk where 1 ∈ B1 and |B1| ≥ 2. In this case, we can remove 1 from B1 and sub-
tract 1 for each of the remaining elements to obtain an ordered set partition π∗ = B∗1/ . . . /B

∗
k

in WOPn−1(312). Then let φn−1(B
∗
1/ . . . /B

∗
k) = C∗1/ . . . /C

∗
k and let C1/ . . . /Ck be result of

adding 1 to each element of C∗1/ . . . /C
∗
k and then adding 1 to the first part. Again it is easy to

see that if we let φn(B1/ . . . /Bk) = C1/ . . . /Ck, then C1/ . . . /Ck ∈ WOP1(213), |Bi| = |Ci| for
i = 1, . . . , k, des(B1/ . . . /Bk) = des(C1/ . . . /Ck), Des(w(B1/ . . . /Bk)) = Des(w(C1/ . . . /Ck)), and
mindes(B1/ . . . /Bk) = mindes(C1/ . . . /Ck).

Next suppose that π ∈ WOPn(312) is such that 1 is position r in w(π) where r ≥ 2. Then
π must be form B1/ . . . /Bj/Bj+1/ . . . /Bk where j ≥ 1 and 1 is the first element in part Bj+1.
Since w(π) is 312-avoiding, it must be the case all the elements of B1/ . . . /Bj are less than all
of the elements Bj+1 − {1}, Bj+2 . . . Bk. It follows that B1/ . . . /Bj is a set partition of {2, . . . , r}
such that w(B1/ . . . /Bj) reduces to a 312-avoiding permutation and Bj+1 − {1}/ . . . /Bk is a set
partition of {r+ 1, . . . , n} such that reduction of w(Bj+1 . . . Bk) is 312-avoiding. Moreover, r− 1 a
descent in w(π) and Bj >min Bj+1. In this case, we let B∗j+1/ . . . /B

∗
k be the result of subtracting

r− 1 from each element of Bj+1 . . . Bk except 1 so that B∗j+1/ . . . /B
∗
k is an ordered set partition of

WOPn−r+1(312) whose word starts with 1. We let B∗1/ . . . /B
∗
j be the result of subtracting 1 from

each element of B1/ . . . /Bj so that B∗1/ . . . /B
∗
j is an element of WOPk−1(312).

Now let φk−1(B
∗
1/ . . . /B

∗
j ) = C1/ . . . /Ck and φn−k−1(B

∗
j+1/ . . . /B

∗
k) = D1/ . . . /Dk−j . We can then

add n− r to each element of C1/ . . . /Cj to produce an ordered set partition C∗1/ . . . /C
∗
j of {n− r+

1, . . . , n} whose word reduces to 213-avoiding permutation such that des(red(w(C∗1/ . . . /C
∗
j ))) =

des(w(B1/ . . . /Bj)), Des(red(w(C∗1/ . . . /C
∗
j ))) = Des(w(B1/ . . . /Bj)), and mindes(C∗1/ . . . /C

∗
j ) =

mindes(B1/ . . . /Bj). Then we let

φn(π) = C∗1/ . . . /C
∗
j /D1/ . . . /Dk−j .
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It is easy to see by induction that des(w(π)) = des(w(φn(π))), Des(w(π)) = Des(w(φn(π))) and
mindes(π)) = mindes(φn(π)). Moreover, by construction 1 is in position r in both w(π) and
w(φn(π)). The only thing that we have to check is the w(φn(π)) is 213-avoiding. But this follows
from the fact that all the elements in C∗1/ . . . /C

∗
j are bigger than all the elements in D1/ . . . /Dk−j

and the word of C∗1/ . . . /C
∗
j reduces to a 213-avoiding permutation and the word of D1/ . . . /Dk−j

is a 231-avoiding permutation.

A1

A2

1

WOPn(312)

=⇒
A1

A2

1

WOPn(213)

Figure 1: Bijection φn :WOPn(312)→WOPn(213)

Following is an example that φ5(3/24/15) = 5/34/12 keeps descents, Descent set of word and
min-descents.

3

2

4

1

5

3

2

4

1

5

=⇒ 3

2

4

1

5

=⇒

Figure 2: π = 3/24/15 ∈ WOP5,3(312)⇒ φ5(π) = 5/34/12 ∈ WOP5,3(213)

We end this section with two observations. Suppose that π = B1/ . . . /Bk ∈ WOPn,k(132). First,
we notice that if the last element `i of Bi is greater than the first element of Bi+1 so that there is
a descent in w(π) at position

∑i
j=1 |Bj |, then it must be the case that min(Bi) > min(Bi+1). That

is, if min(Bi) < min(Bi+1), then min(Bi) 6= `i and hence (bimin , `i, bi+1min) would reduce to 132. It
follows that for all π ∈ WOPn(132), des(π) = mindes(π) and, hence,

WOPdes
132(x, y, t) = WOPmindes

132 (x, y, t).

Second, if we let i such that max(Bi) > max(Bi+1) be a max-descent and let maxdes(π) be the
number of max-descent of an ordered set partition π, then for any π = B1/ . . . /Bk ∈ WOPn,k(132),
i is a max-descent if and only if i is a part-descent. Otherwise if bimin < bi+1max , then the triple
(bimin , bimax , bi+1max) matches pattern 132. Thus,

WOPpdes
132 (x, y, t) = WOPmaxdes

132 (x, y, t).
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3 Computing WOPdes
α (x, y, t) for α ∈ S3

In this section, we shall derive the generating functions WOPdes
α (x, y, t) for α ∈ S3. We start by con-

sidering WOPdes
132(x, y, t). In this case, we shall classify the ordered set partitions π in WOPn(132)

by the size of last part. That is, suppose that π = B1/ . . . /Bk where Bk = {a1 < · · · < ar}.
Then we let Ar+1 denote the set of elements in B1/ . . . /Bk−1 that are greater that ar, A1 denote
the set of elements in B1/ . . . /Bk−1 that are less that a1, and Ai denote the set of elements j in
B1/ . . . /Bk−1 such that ai > j > ai−1 for i = 2, . . . , r. Since w(π) is 132-avoiding, for any i ≥ 2,
every element y in Ai must appear to the left of every element x in Ai−1 since otherwise xyai would
be an occurrence of 132 in w(π). It follows that the word of π has the structure pictured in Figure
3. Note that it is possible that any given Ai is empty. However, this structure ensures that no
part of π can contain elements two different Ai’s so that if Ai is non-empty, then Ai is a union

of consecutive parts of π, say Ai = B
(i)
1 / . . . /B

(i)
ji

. Moreover, if i ≥ 2 and Ai 6= ∅, then the last

element of B
(i)
ji

is a descent in w(π). That is, either A1, . . . , Ai−1 are empty and there is a descent

from the last element of B
(i)
ji

to a1 which is the first element of Bk or one of one of A1, . . . , Ai−1 is
non-empty. Then we let p be the largest integer r such that 1 ≤ r ≤ i − 1 and Ar is non-empty.

Then there is a descent from the last element of B
(i)
ji

to the first element of the first part of Ap.

Ar+1

Ar

A2

A1

ar

ar−1

a2

a1

B1 Bk−1 Bk

Figure 3: The structure of π ∈ WOPn(132).

Now suppose that B(x, y, t) = WOPdes
132(x, y, t). Then this structure implies that B(x, y, t) satisfies

the following recursive relation.

B(x, y, t) = 1 +
∑
r≥1

xtr(1 + y(B(x, y, t)− 1))rB(x, y, t). (5)

In (5) the factor xtr accounts for those ordered set partitions π whose last part is of size r. We get
a factor 1 + y(B(x, y, t)− 1) for Ai for i = 2, . . . , r+ 1 where the 1 accounts for the possibility that
Ai is empty and the term y(B(x, y, t)−1) accounts for the fact that there is descent starting at the
last element of Ai if Ai is non-empty. Finally the last factor B(x, y, t) corresponds the contribution
over all possible A1.

It follows that

B(x, y, t) = 1 +
xtB(x, y, t)(1 + y(B(x, y, t)− 1))

1− t(1 + y(B(x, y, t)− 1))
. (6)

9



Multiplying both sides of (6) by 1− t(y(B(x, y, t)− 1)) leads to the quadratic equation,

0 = (1− t+ ty)−B(x, y, t)(1− 2yt+ xyt− t− tx) + t(xy + y)(B(x, y, t)2 (7)

and solving for B(x, y, t) gives that

B(x, y, t) =
(1 + 2yt+ xyt− t− tx)−

√
(1 + 2yt+ xyt− t− tx)2 − 4(1− t+ ty)(t(y + xy))

2t(y + yt)
. (8)

If we let f(x, y, t) = B(x, y, t)− 1, then (6) gives that

f(x, y, t) = x
t(f(x, y, t) + 1)(1 + y(f(x, y, t))

1− t(1 + yf(x, y, t))
. (9)

The Lagrange Inversion Theorem implies that the coefficient of xk in f(x, y, t), f(x, y, t)|xk , is given
by

f(x, y, t)|xk =
1

k
Γ(x)k|xk−1

where Γ(x) = t(x+1)(1+yx)
1−t(1+yx) . Using Newton’s binomial theorem, we can compute that

f(x, y, t)|xktn =
1

k

tk(1 + x)k(1 + yx)k

(1− t(1 + yx))k
|xk−1tn

=
1

k
(1 + x)k(1 + yx)k

∑
s≥0

(
k + s− 1

k − 1

)
ts(1 + xy)s

 |xk−1tn−k

=
1

k
(1 + x)k(1 + yx)n

(
k + n− k − 1

k − 1

)
|xk−1

=
1

k

(
n− 1

k − 1

) k−1∑
j=0

(
k

j

)(
n

k − 1− j

)
yk−1−j .

Thus we have the following theorem.
Theorem 2.

WOPdes
132(x, y, t) =

(1 + 2yt+ xyt− t− tx)−
√

(1 + 2yt+ xyt− t− tx)2 − 4(1− t+ ty)(t(y + xy))

2t(y + yx)
(10)

and ∑
π∈WOPn,k(132)

ydes(π) =
1

k

(
n− 1

k − 1

) k−1∑
j=0

(
k

j

)(
n

k − 1− j

)
yk−1−j . (11)

Below are the first few terms of WOPdes
132(x, y, t).

WOPdes
132(x, y, t) =

1 + xt+ (x+ (1 + y)x2)t2 + (x+ (2 + 3y)x2 + (1 + 3y + y2))t3 +

(x+ (3 + 6y)x2 + (3 + 12y + 6y2)x3 + (1 + 6y + 6y2 + y3)x4)t4 +(
x+ (4 + 10y)x2 + (6 + 30y + 20y2)x3 + (4 + 30y + 40y2 + 10y3)x4+

(1 + 10y + 20y2 + 10y3 + y4)x5
)
t5 + · · ·

10



Setting y = 1 in Theorem 2 and observing that
∑k−1

j=0

(
n
j

)(
n

k−1−j
)

=
(
n+k
k−1
)
, we have the following

corollary.
Corollary 3.

WOPdes
132(x, 1, t) =

(1 + t)−
√

(1 + t)2 − 4t(1 + x)

2t(1 + x)
(12)

and

wopn,k(132) =
1

k

(
n− 1

k − 1

)(
n+ k

k − 1

)
. (13)

Below are the first few terms of WOPdes
132(x, 1, t).

WOPdes
132(x, 1, t) =

1 + xt+ (x+ 2x2)t2 + (x+ 5x2 + 5x3)t3 +

(x+ 9x2 + 21x3 + 14x4)t4 + (x+ 14x2 + 56x3 + 84x4 + 42x5)t5 +

(x+ 20x+ 120x3 + 300x4 + 330x5 + 132x6)t6 +

(x+ 27x+ 225x3 + 825x4 + 1485x5 + 1287x6 + 429x7)t7 +

(x+ 35x+ 385x3 + 1925x4 + 5005x5 + 7007x6 + 5005x7 + 1430x8)t8 +

(x+ 44x+ 616x3 + 4004x4 + 14014x5 + 28028x6 + 32032x7 + 19448x8 + 4862x9)t9 + · · ·

It follows from Theorem 2 that wopn(132) is the number of rooted planar trees with n + 1 leaves
that have no vertices of out degree 1. The reason is that the generating function F of both objects
when only track object size n satisfies the recursion that

F (t) = 1 +
∑
r≥1

trF (t)r+1.

A bijection follows naturally from the generating function. Figure 4 shows an example of the
bijection. Based on the recursion, the number of non-leaves is equal to the number of blocks of
the ordered set partition, and the number of out degree of the root is equal to (the size of the last
block)+1 of the ordered set partition.

4 5 2 1 3 ⇐⇒

13

2v1 45

v4v3v2 v5 v6

Figure 4: Bijection between WOPn(132) and rooted planar trees with no vertices out degree 1

Given any sequence of positive numbers 1 ≤ b1 < b2 < · · · < bs, we let

A = A(x, y, t, q1, . . . , qs) = WOPdes
132,{b1,...,bs}(x, y, t, q1, . . . , qs).

It follows from the block structure pictured in Figure 3 that

A = 1 +
s∑
i=1

xqit
bi(1 + y(A− 1))biA.
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If we set F = F (x, y, t, q1, . . . , qs) = A(x, y, t, q1, . . . , qs)− 1, then we see that

F = x(F + 1)
s∑
i=1

qit
bi(1 + yF )bi .

It follows from Lagrange Inversion that

F |xk =
1

k
δk(x)|xk−1

where δ(x) = (x+ 1)
∑s

i=1 qit
bi(1 + yx)bi . Thus

F |xktn =
1

k
(x+ 1)k

∑
αi≥0

α1+···+αs=k

(
k

α1, . . . , αs

)
t
∑k
i=1 αibi(1 + yx)(

∑k
i=1 αibi)

s∏
i=1

qαii |xk−1tn

=
1

k
(x+ 1)k(1 + yx)n

∑
α1+···+αs=k

α1b1+···αkbk=n

(
k

α1, . . . , αs

) s∏
i=1

qαii |xk−1

=
1

k

k−1∑
j=0

(
k

j

)(
n

k − 1− j

)
yk−1−j

 ∑
α1+···+αs=k

α1b1+···αkbk=n

(
k

α1, . . . , αs

) s∏
i=1

qαii .

If
∑
αibi = n, then taking the coefficient of qα1

1 . . . qαss on both sides of the above expression yields
the following theorem.
Theorem 4. Suppose that 0 < b1 < · · · < bs,

∑s
i=1 = k, and

∑
αibi = n. Then

∑
π∈WOP〈bα11 ...b

αs
s 〉

(132)

ydes(π) =
1

k

(
k

α1, . . . , αs

)k−1∑
j=0

(
k

j

)(
n

k − 1− j

)
yk−1−j

 .

Setting y = 1 in Theorem 4 and observing that
∑k−1

j=0

(
k
j

)(
n

k−1−j
)

=
(
n+k
k−1
)

yields the following
corollary.
Corollary 5. Suppose that 0 < b1 < · · · < bs,

∑s
i=1 αi = k, and

∑s
i=1 αibi = n. Then

wop〈bα11 ...b
αk
s 〉(132) =

1

k

(
n+ k

k − 1

)(
k

α1, . . . , αs

)
.

Next we turn our attention to ordered set partitions π such that w(π) avoids 123. In this case,
all the parts of π must be of size 1 or 2 since any part B of size k ≥ 3 immediately yields an
consecutive increasing sequence of size k in the word of its ordered set partition.

Thus we will compute the generating function

WOPdes
123,{1,2}(x, y, t, q1, q2) =

∑
π∈WOP〈1k2`〉

ydes(π)tk+2`xk+`qk1q
`
2.

To compute WOP123,{1,2}(x, y, t, q1, q2), we must first review a bijection of Deutsch and Elizalde
between 123-avoiding permutations and Dyck paths.
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Given an n×n chessboard , we set the origin (0, 0) at the lower left corner, and label the coordinates
of the columns from left to right with 0, 1, . . . , n and the coordinates of the rows from bottom to
top with 0, 1 . . . , n. A Dyck path is a path made up of unit down-steps D and unit right-steps R
which starts at (0, n), which is at the bottom right-hand corner, and ends at (n, 0), which is at the
top left-hand corner, has stays on or below the diagonal x = y. Given a Dyck path P , we let

Return(P ) = {i ≥ 1 : P goes through the point (i, n− i)}

and we let return(P ) = |Return(P )|. For example, for the Dyck path

P = DDRDDRRRDDRDRDRRDR

shown on the right in Figure 5, Return(P ) = {4, 8, 9} and return(P ) = 3.

Given any permutation σ = σ1 . . . σn ∈ Sn(123), we write it on our n × n chessboard by placing
σi in the ith column and σthi row, reading from bottom to top. Then, we shade the cells to the
north-east of the cell that contains σi. The path Ψ(σ) is the path that goes along the south-west
boundary of the shaded cells. For example, this process is pictured in Figure 5 for the permutation
σ = 869743251 ∈ S9(123) which maps to the Dyck path DDRDDRRRDDRDRDRRDR.

8

6

9

7

4

3

2

5

1

=⇒

Figure 5: Sn(123) to Dn

Given any Dyck path P , we construct Ψ−1(P ) = σ123(P ) as follows. First we place an “×” in every
outer corner of P . Then we consider the rows and columns which do not have a ×. Processing
the columns from top to bottom and the rows from left to right, we place an × in the ith empty
row and ith empty column. This process is pictured in Figure 6. The details that Ψ is bijection
between Sn(123) and Dn can be found in [3].

We shall classify the ordered set partitions π ∈ WOPn(123) by the first return (from left to right)
of the path Ψ(w(π)) = P . Suppose that the first return of the path P is at the point (n − k, k),
then the path P is divided by the first return into 2 paths, path DAR and path B, as shown in
Figure 7 (a). The numbers in the corners above the point (n− k, k) must come from {k+ 1, . . . n}.
Because we place the ×s in the columns which are not occupied by the ×s in the outer corners of
P , in a decreasing manner, reading from left to right, it follows that by the time we have reached
column n − k, we must have used all the numbers {k + 1, . . . , n}. This means that there can be
no ×s in the red area of the diagram so that all the ×s in the last k columns must lie in lower k
rows. In particular, this implies in that in w(π), all the elements in {k + 1, . . . , n} preceed all the
elements in {1, . . . , k}. The elements in {k+ 1, . . . , n} are based on path DAR and the elements in
{1, . . . , k} are based on path B, and there is a descent between the last of occurrence of a letter in
{k + 1, . . . , n} in w(π) and the first occurrence of a letter in {1, . . . , k} in w(π) if k > 0. Hence we
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7
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Figure 6: Dn to Sn(123)

must be able to break any ordered set partition π = B1/ . . . /Bj such that Ψ(w(π)) = P into two
parts, B1/ . . . /Bi which contains all the letters in {k+1, . . . , n} and Bi+1/ . . . /Bj which contain all
the letters in {1, . . . , k}. Let A(x, y, t, q1, q2) = WOPdes

123,{1,2}(x, y, t, q1, q2). It is easy to see that the
contribution to A(x, y, t, q1, q2) by summing over the weights of all possible choices of Bi+1/ . . . /Bj
as k varies over all choices of k > 0 is y(A(x, y, t, q1, q2)− 1) and is equal to 1 if k = 0.

(n− k, k)
A

B

0 n

n

(a)

lift(Ψ−1(A))

Ψ−1(B)

(b)

Figure 7: The first return of P

To analyze the contribution from parts B1/ . . . /Bi, we need to work on path DAR, which can be
seen as lifting the path A one unit higher. We let lift(P ) be the path DPR. For σ ∈ Sn(123) and
P = Ψ−1(σ), we write lift(σ) for the permutation Ψ−1(lift(P )) = Ψ−1(DPR) ∈ Sn+1 corresponding
with path lift(P ).

The lifting operation is pictured in Figure 8. We say that a pair of consecutive DR steps is a peak of
a Dyck path, and in the corresponding 123-avoiding permutation, the numbers in rows that contain
peaks are called peaks of a permutation. A number is called non-peak if it is not a peak. It is easy
to see that the peaks of Dyck path P and lift(P ) are labeled with the same numbers under Ψ−1.
Since we label the rows and columns that do not contain peaks from left to right with the non-peak
numbers in decreasing order under the map Ψ−1, we see that n + 1 will be in the column of the
first non-peak and that all the remaining shifts over one to the next column that does not contain
a peak. Figure 8 illustrates the labeling of non-peaks of σ = (8, 6, 9, 7, 4, 3, 2, 5, 1) ∈ S9(123).

It is not difficult to see that σ and lift(σ) have the same Descent set in the first n − 1 positions,
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and lift(σ)n is a descent if and only if σn is a non-peak. It is very important that the lift operation
preserves Descent set in the first n−1 positions, as we have to break descent positions to transform
a permutation into an ordered set partition. Further, the word of an ordered set partition in
WOP(123) is determined by a pair of Dyck paths, A and B. When analyzing ordered set partition
word-avoiding 123, we simply analyze the small permutations corresponding with path A and B
and discuss a few cases at the first return position.

8

6

9

7

4

3

2

5

1

=⇒

8

6

4

3

2

1

9

7

5

10

9

7

5

Figure 8: σ = (8, 6, 9, 7, 4, 3, 2, 5, 1) and lift(σ) = (8, 6, 10, 9, 4, 3, 2, 7, 1, 5)

The computation of the contribution to A(x, y, t, q1, q2) from the parts B1/ . . . /Bi which contains
all the letters in {k + 1, . . . , n} depends on the following four cases.

Case 1. The first return of P is at the point (1, n− 1).

In this case, P starts of DE and n is the first corner. This means that w(π) starts out with
n, i = 1, and B1 = {n}. It is easy to see that in this case the contribution to A(x, y, t, q1, q2) is
xtq1(1+y(A(x, y, t, q1, q2)−1)). That is, if n = 1, then we get a contribution of xtq1 and otherwise,
n will cause a descent in w(π) which will give a contribution of xtq1y(A(x, y, t, q1, q2)− 1).

Case 2. The first return of P is at the point (2, n− 2).

In this case, P starts of DDEE, n − 1 is the first corner of P and n in the square (2, n) so
that w(π) starts out with (n − 1)n. Then it is either the case that i = 2, B1 = {n − 1}, and
B2 = {n} or i = 1 and B1 = {n − 1, n}. It is easy to see that in the first case, the contribution
to A(x, y, t, q1, q2) is x2t2q21(1 + y(A(x, y, t, q1, q2) − 1). That is, if n = 2, then we get a contri-
bution of x2t2q21 and otherwise, n will cause a descent in w(π) which will give a contribution of
x2t2q21(y(A(x, y, t, q1, q2) − 1). Similarly, in the second case the contribution to A(x, y, t, q1, q2) is
xt2q2(1 + y(A(x, y, t, q1, q2)− 1)). Thus the total contribution to A(x, y, t, q1, q2) from Case 2 is

(x2t2q21 + xt2q2)(1 + y(A(x, y, t, q1, q2)− 1)).

Case 3. k < n− 2 and k + 1 is in column n− k − 1.
In this case, we have the situation pictured in Figure 9. Thus w(π) = w1 . . . wn where wn−k−1 = k+1
and wn−k = p where k+1 < p. It follows that either Bi = {k+1, p} or Bi−1 = {k+1} and Bi = {p}.
We claim that the contribution to A(x, y, t, q1, q2) in the first case where Bi = {k + 1, p} is

y(A(x, y, t, q1, q2)− 1)xt2q2(1 + y(A(x, y, t, q1, q2)− 1)).
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That is, the first factor of y comes from the fact that there is a descent caused by the last ele-
ment of Bi−1 and the first element of Bi which is k + 1. The next factor (A(x, y, t, q1, q2) − 1)
comes from summing over the weights of the reductions of B1/ . . . /Bi−1 over all possible choices
of B1/ . . . /Bi−1. The factor xt2q2 comes from Bi. If Bi+1/ . . . /Bj is empty then we get a factor of
1 and, if Bi+1/ . . . /Bj is not empty, then we get a factor of y coming from the descents between
the last element of Bi and the first element of Bi+1 and a factor of (A(x, y, t, q1, q2) − 1) coming
summing the weights over all possible choices of Bi+1/ . . . /Bj .

A similar reasoning will show that the contribution to A(x, y, t, q1, q2) in the first case where Bi−1 =
{k + 1} and Bi = {p} is

y(A(x, y, t, q1, q2)− 1)x2t2q21(1 + y(A(x, y, t, q1, q2)− 1)).

Thus the total contribution to A(x, y, t, q1, q2) in Case 3 is

y(A(x, y, t, q1, q2)− 1)(xt2q2 + x2t2q21)(1 + y(A(x, y, t, q1, q2)− 1)).

(n− k, k)

0 n

n

k + 1

Figure 9: The situation in Case 3.

Case 4. k < n− 2 and k + 1 is in column r where r < n− k − 1.
In this case, we have the situation pictured in Figure 10. Thus w(π) = w1 . . . wn where wr = k+ 1
and wr+1 . . . wn−k is a decreasing sequence of length at least 2. In this situation, Bi must be a
singleton part {wn−k}. We claim that the contribution to A(x, y, t, q1, q2) from the ordered set
partitions in Case 4 is

y(A(x, y, t, q1, q2)− 1− xtq1 − xytq1(A(x, y, t, q1, q2)− 1))xtq1(1 + y(A(x, y, t, q1, q2)− 1)).

That is, the first factor of y comes from the fact that there is a descent caused by the last element of
Bi−1 and the element in Bi. The next factor comes summing over the weights of the reductions of
B1/ . . . /Bi−1 over all possible choices of B1/ . . . /Bi−1. It is not difficult to see that this corresponds
to the sum of the weights over all non-empty ordered set partitions π where 1 is not the last element
of the word of π. Let

An(x, y, q1, q2) =
∑

π∈WOPn(123)

x`(π)ydes(w(π))q
one(π)
1 q

two(π)
2 .

where one(π) is the number of parts of size 1 in π and two(π) is the number of parts of size 2 in
π. It is easy to see that An(x, y, q1, q2) − xytq1An−1(x, y, q1, q2) is the weight over all ordered set
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partition π of size n such that 1 is not the last element of the word of π. Thus the sum of the
weights over all non-empty ordered set partitions π where 1 is not the last element of the word of
π equals∑

n≥2
tn(An(x, y, q1, q2)− yxtq1An−1(x, y, q1, q2)) =

(A(x, y, t, q1, q2)− 1− q1xt)− yxtq1(A(x, y, t, q1, q2)− 1).

Finally we get a factor of 1 if Bi+1/ . . . /Bj is empty and a factor of y(A(x, y, t, q1, q2)− 1) over all
possible choices of Bi+1/ . . . /Bj if Bi+1/ . . . /Bj is non-empty.

(n− k, k)

0 n

n

k + 1

Figure 10: The situation in Case 4.

Summing the contributions from Cases 1-4, we see that

A(x, y, t, q1, q2) = 1 + (y − 1)2(q1xt+ q2xt
2 − q21x2t2(y − 1))−

2A(x, y, t, q1, q2)(y(y − 1)(q1xt+ q2xt
2 − q21x2t2(y − 1)) +

A(x, y, t, q1, q2)
2y2(q1xt+ q2xt

2 − q21x2t2(y − 1)). (14)

Because (14) involves both linear and quadratic terms in x, we can not apply the Lagrange Inversion
Theorem to get an explicit formula for WOPdes

123,{1,2}(x, y, t, q1, q2)|xk . Nevertheless, (14) gives us a
quadratic equation which we can solve for A(x, y, t, q1, q2) to prove the following theorem.
Theorem 6.

WOPdes
123,{1,2}(x, y, t, q1, q2) =

P (x, y, t, q1, q2)−
√
Q(x, y, t, q1, q2)

R(x, y, t, q1, q2)

where

P (x, y, t, q1, q2) = 1 + 2y(y − 1)q1xt+ 2y(y − 1)q2xt
2 − 2y(y − 1)2q21x

2t2,

Q(x, y, t, q1, q2) = 1− 4yq1xt− 4yq2xt
2 + 4(y(y − 1)q21x

2t2, and

R(x, y, t, q1, q2) = 2y2q1xt+ 2y2q2xt
2 − 2y2(y − 1)q21x

2t2.

We can then use Theorem 6 to find the first few terms of WOP123,{1,2}(x, y, t, q1, q2). That is,
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WOPdes
123,{1,2}(x, y, t, q1, q2) =

1 + (q1x)t+ (q2x+ (q21 + q21y)x2)t2 +

(4q1q2yx
2 + (4q31y + q31y

2)x3)t3 +

(2q22yx
2 + (4q21q2y + 11q21q2y

2)x3 + (2q41y + 11q41y
2 + q41y

3)x4)t4 +

(15q1q
2
2y

2x3 + (30q31q2y
2 + 26q31q2y

3)x4 + (15q51y
2 + 26q51y

3 + q51y
4)x5)t5 + · · ·

Setting y = 1 in WOP123,{1,2}(x, y, t, q1, q2) gives us the following corollary.
Corollary 7.

1 +
∑
n≥1

tn
∑

π∈WOPn(123)

x`(π)q
one(π)
1 q

two(π)
2 =

1−
√

1− 4tx(q1 + xq2)

2tx(q1 + xq2)
,

and the coefficient

wop〈1α1 ,2α2 〉(123) =
1

α1 + α2 + 1

(
2α1 + 2α2

α1 + α2

)(
α1 + α2

α1

)
,

wopn,k(123) = wop〈12k−n,2n−k〉(123) =
1

k + 1

(
2k

k

)(
k

n− k

)
.

Proof. Let A123(x, t, q1, q2) = WOP123,{1,2}(x, 1, t, q1, q2), then the recursion becomes

A123(x, t, q1, q2) = 1 + tq1xA
2
123(x, t, q1, q2) + tq2x

2A2
123(x, t, q1, q2).

The formula for A123(x, t, q1, q2) is obtained by solving the quadratic equation, and the formula for
the coefficients are obtained by applying Lagrange Inversion.

Thus, we can calculate the number of ordered set partitions in WOPn(123) with certain numbers
of blocks of size 1 and size 2. Now we give a formula for the number of ordered set partitions in
OPn(123) with a certain block size composition. In [4], Godbole, et al. showed that

op[b1,...,bi,bi+1,...,bk]
(321) = op[b1,...,bi+1,bi...,bk]

(321)

by constructing a bijective map between OP [b1,...,bi,bi+1,...,bk](321) and OP [b1,...,bi+1,bi...,bk](321).

For our new definition of pattern avoidance, We prove the similar result that the order of block
sizes in block size composition won’t make a difference to wop[b1,...,bk]

(123), and then we calculate
the formula for wop[b1,...,bk]

(123).

Theorem 8. We have

wop[b1,...,bi,bi+1,...,bk]
(123) = wop[b1,...,bi+1,bi...,bk]

(123)

and
wop[b1,...,bi,bi+1,...,bk]

(321) = wop[b1,...,bi+1,bi...,bk]
(321).
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Proof. The second equation is included in the bijection constructed by Godbole, et al. that

wop[b1,...,bi,bi+1,...,bk]
(321) = op[b1,...,bi,bi+1,...,bk]

(321)

= op[b1,...,bi+1,bi,...,bk]
(321)

= wop[b1,...,bi+1,bi,...,bk]
(321).

For the first equation, we prove by a bijection.

For a block size composition B = [b1, . . . , bi, bi+1, . . . , bk], since we are considering the 123-avoiding
ordered set partitions, all the blocks are of size either 1 or 2. We only need to show equality in 2
cases.

(1) If bi = bi+1 = 1 or 2, then op[b1,...,bi,bi+1,...,bk]
(123) and op[b1,...,bi+1,bi,...,bk]

(123) are exactly the
same enumerations.

(2) If bi 6= bi+1, then without loss of generality, we suppose bi = 1 and bi+1 = 2. We show that there
is a bijective map between WOP[b1, . . . , 1, 2, . . . , bk](123) and WOP[b1, . . . , 2, 1, . . . , bk](123).
We suppose the 3 integers filled in blocks bi and bi+1 are a1 < a2 < a3. Since there is no 123
pattern-match, there are only 2 possible fillings for both [. . . , 1, 2, . . .] and [. . . , 2, 1, . . .] cases.
They are a2/a1a3 and a3/a1a2 for [. . . , 1, 2, . . .], a2a3/a1 and a1a3/a2 for [. . . , 2, 1, . . .]. We
construct a map, as showed in Figure 11, mapping a2/a1a3 to a2a3/a1 and a3/a1a2 to a1a3/a2.

a2 a1 a3

a3 a1 a2 ⇐⇒

⇐⇒ a1a2 a3

a2a1 a3

[. . . , 1, 2, . . .] [. . . , 2, 1, . . .]

Figure 11: Bijection between WOP [b1,...,1,2,...,bk](123) and WOP [b1,...,2,1,...,bk](123).

It is not difficult to check that the map is bijective and preserves 123-avoiding condition. Thus
wop[b1,...,bi,bi+1,...,bk]

(321) = wop[b1,...,bi+1,bi...,bk]
(321).

The formula about wop[b1,...,bi,bi+1,...,bk]
(123) follows the bijection.

Theorem 9. For any composition [b1, . . . , bk](bi ∈ {1, 2}), we have

wop[b1,...,bk]
(123) = Ck,

here Ck = 1
k+1

(
2k
k

)
is the kth Catalan number.

Proof. Let α1 be the number of 1’s and α2 be the number of 2’s in [b1, . . . , bk]. From Corollary 7,
we have the formula

wop〈1α1 ,2α2 〉(123) =
1

α1 + α2 + 1

(
2α1 + 2α2

α1 + α2

)(
α1 + α2

α1

)
.
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Since the order of block sizes won’t make a difference to wop[b1,...,bk]
(123) and there are

(
α1+α2

α1

)
ways to permute the block size, we have

wop[b1,...,bk]
(123) =

1
α1+α2+1

(
2α1+2α2

α1+α2

)(
α1+α2

α1

)(
α1+α2

α1

) =
1

α1 + α2 + 1

(
2α1 + 2α2

α1 + α2

)
=

1

k + 1

(
2k

k

)
= Ck.

Setting y = q1 = q2 = 1 in WOP123,{1,2}(x, y, t, q1, q2) gives us the following corollary.
Corollary 10.

1 +
∑
n≥1

tn
∑

π∈WOPn(123)

x`(π) =
1−
√

1− 4tx− 4t2x

2(xt+ xt2)
.

The initial terms of the series 1 +
∑

n≥1 t
n
∑

π∈WOPn(123) x
`(π) are

1 + xt+ (x+ 2x2)t2 + (4x2 + 5x3)t3 + (2x2 + 15x3 + 14x4)t4 +

(15x3 + 56x4 + 42x5)t5 + (5x3 + 84x4 + 210x5 + 132x6)t6 +

(56x4 + 420x5 + 792x6 + 429x7)t7 +

(14x4 + 420x5 + 1980x6 + 3003x7 + 1430x8)t8 +

(210x5 + 2640x6 + 9009x7 + 11440x8 + 4862x9)t9 + · · ·

We pause to make some observations about some special cases of elements of WOPn(123). First
consider the case of ordered set partitions in WOPn(123) where every part has size 1. In this case,
we are just considering the generating function of ydes(σ) over all 123-avoiding permutations. We
can obtain this generating function from WOP123,{1,2}(x, y, t, q1, q2) by setting x equal to 1/x, t
equal to tx, and then setting x = 0. We carried out these steps in Mathematica and obtained the
following corollary which was first proved by Barnabei, Bonetti, and Silimbani [1].
Corollary 11.

1 +
∑
n≥1

tn
∑

σ∈Sn(123)

ydes(σ) =
−1− 2ty(y − 1) + 2tty(y − 1)2 +

√
1− 4ty − 4t2y(y − 1)

2ty2(−1 + t(y − 1))
.

The first few terms 1 +
∑

n≥1 t
n
∑

σ∈Sn(123) y
des(σ) are

1 + t+ (1 + y)t2 + (4y + y2)t3 + (2y + 11y2 + y3)t4 +

(15y2 + 26y3 + y4)t5 + (5y2 + 69y3 + 57y4 + y5)t6 +

(56y3 + 252y4 + 120y5 + y6)t7 + (14y3 + 364y4 + 804y5 + 247y6 + y7)t8 +

(201y4 + 1880y5 + 2349y6 + 502y7 + y8)t9 + · · · .

We can do a similar computation starting with the generating function WOPdes
132(x, y, t) to obtain

the following corollary.
Corollary 12. For any α ∈ {132, 231, 312, 213},

1 +
∑
n≥1

tn
∑

σ∈Sn(α)

ydes(σ) =
1 + t(y − 1)−

√
1 + t2(y − 1)2 − 2t(y + 1)

2yt
.
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The first few terms 1 +
∑

n≥1 t
n
∑

σ∈Sn(132) y
des(σ) are

1 + t+ (1 + y)t2 + (1 + 3y + y2)t3 + (1 + 6y + 6y2 + y3)t4 +

(1 + 10y + 20y2 + 10y3 + y4)t5 + (1 + 15y + 50y2 + 50y3 + 15y4 + y5)t6 +

(1 + 21y + 105y2 + 175y3 + 105y2 + 21y5 + y6)t7 +

(1 + 28y + 196y2 + 490y3 + 490y4 + 196y5 + 28y6 + y7)t8 +

(1 + 36y + 336y2 + 1176y3 + 1764y4 + 1176y5 + 336y6 + 36y7 + y8)t9 + · · · .

In this case, the coefficients are the coefficients of the triangle of the Narayana numbers T (n, k) =
1
k

(
n
k−1
)(
n−1
k−1
)

which is entry A001263 in the OEIS [11].

The final generating function that we shall consider in this section is WOPdes
321(x, y, t). Since a

permutation σ is 321-avoiding if and only if its reverse σr is 123-avoiding, we shall again appeal
to the bijection Ψ of Deutsch and Elizalde between 123-avoiding permutations and Dycks paths
and classify the ordered set partitions δ whose word avoids 321 by Ψ(w(δ)). The main difference
in this case is that we obtain the permutation w(δ) by reading the elements in the diagram from
right to left, rather from left to right, and we classify the ordered set partitions by the last return
of Ψ(w(δ)). In this situation, we have two cases for any δ ∈ WOPn(321).

Case 1. The last return of Ψ(w(δ)) is at position (n− 1, 1) in which case σ starts with 1.

In this case, 1 can not be part of an occurrence of 321 in the word of the ordered set partition.
Thus either 1 is in a part by itself in which case we get a contribution of xtWOPdes

321(x, y, t) to
WOPdes

321(x, y, t) or 1 is part of the first part of the ordered set partition arising from the part of the
ordered set partition above and to the left of 1 which will give a contribution of t(WOPdes

321(x, y, t)−1)
to WOPdes

321(x, y, t). Thus the total contribution to WOPdes
321(x, y, t) of the ordered set partitions

whose word avoids 321 and starts with 1 is

xtWOPdes
321(x, y, t) + t(WOPdes

321(x, y.t)− 1).

Case 2. Either Ψ(w(δ)) has no return or the last return is at position (n− k, k) where k > 1.

Let us first consider the cases of ordered set partitions δ ∈ WOPn(321) such that Ψ(w(δ)) hits the
diagonal only at (0, n) and (n, 0) and n ≥ 2. For such ordered set partitions, we have two subcases.

Subcase 2.1 The second element of w(δ) equals 1.

In this case, suppose that w(δ) = w1 . . . wn where w2 = 1. Then we have the situation pictured in
Figure 12. In this case, since w1 > w2 = 1, it must be that case that w1 is in a part by itself so that
it will contribute a factor of xyt to the weight of δ. If we remove the row and column containing
w1 and keep the same outside corner squares, and possibly re-label the × in the columns with no
outside corner squares by having the × in those columns decrease, reading from left to right, we
will obtain an arbitrary ordered set partition π ∈ WOPn−1(321) such that w(π) starts with 1.
Hence the ordered set partitions in this subcase will contribute a factor of

xyt(xtWOPdes
321(x, y, t) + t(WOPdes

321(x, y, t)− 1))
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1

w1
=⇒

1

Figure 12: Ordered set partitions in Subcase 2.1.

to WOPdes
321(x, y, t).

Subcase 2.2

1

w1
=⇒

1

Figure 13: Ordered set partitions in Subcase 2.2.

In this case, suppose that w(δ) = w1 . . . wn where wi = 1 for i > 2. Then we have the situation
pictured in Figure 13. In this case, since w1 < w2 < · · · < wi−1 > wi = 1, it must be that case
that wi starts a new part in δ. If we remove the row and column containing w1 and keep the same
outside corner squares, are possibly re-label the × in the columns with no outside corner squares
by having the × in those column decrease, reading from left to right, we will obtain an arbitrary
ordered set partition π ∈ WOPn−1(321) such that w(π) does not start with 1. The sum of the
weights of the ordered set partitions π such that w(π) does not start with 1 is

WOPdes
321(x, y, t)− 1− xytWOPdes

321(x, y, t)− t(WOPdes
321(x, y, t)− 1).

Then w1 is either in a part by itself in which case it contributes a factor of xt or is in the part with
w2 in which case it contributes a factor of t. Hence the ordered set partitions in this subcase will
contribute a factor of

(xt+ t)(WOPdes
321(x, y, t)− 1− xytWOPdes

321(x, y, t)− t(WOPdes
321(x, y, t)− 1))

to WOPdes
321(x, y, t).

Thus the ordered set partitions δ ∈ WOPn(321) such that Ψ(w(δ)) hits the diagonal only at (0, n)
and (n, 0) and n ≥ 2 contribute a factor of

NR(x, y, t) = xyt(xtWOPdes
321(x, y, t) + t(WOPdes

321(x, y, t)− 1))+

(xt+ t)(WOPdes
321(x, y, t)− 1− xytWOPdes

321(x, y, t)− t(WOPdes
321(x, y, t)− 1)) (15)

to WOPdes
321(x, y, t).
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(n− k, k)

word: 314256897

Figure 14: The general situation in Case 2.

Now consider in the general case in Case 2 where the last return is at (n − k, k) where 1 ≤ k <
n − 1. This situation is pictured in Figure 14. Because we fill the columns which do not have
outside corner cells in a decreasing manner, reading from left to right, it is easy to see that there
can be no × in the cells of the red area in Figure 14. This means that the × corresponding to
1, . . . , k must all be in the bottom k × k squares. What we don’t know is how the final increasing
sequence of the elements 1, . . . , k in w(δ) union of the initial increasing sequence of the remaining
elements break up into parts in δ. For example, in Figure 14, k = 4 and the last increasing
sequence of the elements 1, . . . , 5 in w(δ) is 2 and the initial increasing sequence of the remaining
elements is 6, 7, 9, 10. Then we have two cases. The first case is when there is no overlap between
the parts containing 1, . . . , k and the remaining parts. In this case, we get a contribution of
NR(x, y, t)(WOPdes

321(x, y, t)− 1) to WOPdes
321(x, y, t). If there is an overlap, then we need to remove

the x corresponding to the last part in the generating function NR(x, y, t) so that we would get a
contribution of 1

xD(x, y, t)(WOPdes
321(x, y, t)− 1).

It follows that the total contribution to WOPdes
321(x, y, t) from the ordered set partitions δ ∈

WOP(321) in Case 2 is

NR(x, y, t) + (1− 1

x
)NR(x, y, t)(WOPdes

321(x, y, t)− 1). (16)

Hence we see that

WOPdes
321(x, y, t) = 1 + xtWOPdes

321(x, y, t) + t(WOPdes
321(x, y, t)− 1) +

NR(x, y, t) + (1− 1

x
)D(x, y, t)(WOPdes

321(x, y, t)− 1)

where NR(x, y, t) is defined as in (15). This is a quadratic equation in WOPdes
321(x, y, t) which we

can solve to obtain the following theorem.

Theorem 13.

WOPdes
321(x, y, t) =

2t(1 + x)(1 + t((x(y − 1)− 1))− x−
√
x2(1− 4t(1 + x))(1 + t((x(y − 1)− 1))

2t(1 + x)2(1 + t((x(y − 1)− 1))
(17)
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The first few terms of WOPdes
321(x, y, t) are as follows.

WOPdes
321(x, y, t) = 1 + xt+ (x+ (1 + y)x2)t2 +

(x+ (2 + 4y)x2 + (1 + 4y)x3)t3 +

(x+ (3 + 11y)x2 + (3 + 22y + y2)x3 + (1 + 11y + 2y2)x4)t4 +

(x+ (4 + 26y)x2 + (6 + 78y + 15y2)x3 + (4 + 78y + 30y2)x4 + (1 + 26y + 15y2)x5)t5 + · · ·

Setting y = 1 in (17), we obtain the following corollary which recovers the result of Chen, Dai, and
Zhou [2].

Corollary 14.

WOPdes
321(x, 1, t) =

2t2(1 + x)− 2t(1 + x)− x− x
√

1− 4t(1 + x) + 4t2(1 + x)

2t(t− 1)(1 + x)
. (18)

The recursion that we used to compute WOPdes
321(x, y, t) does not allow us to control the size of

the parts of the ordered set partitions π ∈ WOPn(321) so that we have not been able to compute
generating functions of the form WOPdes

{b1,...,bk}(x, y, t, q1, . . . , qk) in general.

4 Generating functions for min-descents

Based on the analysis in Section 2, we need to study the following 5 kinds of generating functions,

WOPmindes
213 (x, y, t) = WOPmindes

312 (x, y, t),

WOPmindes
132 (x, y, t) , WOPmindes

231 (x, y, t),

WOPmindes
123 (x, y, t) , WOPmindes

321 (x, y, t).

We are able to solve the functions WOPmindes
132 (x, y, t) and WOPmindes

231 (x, y, t), and write the func-
tions WOPmindes

213 (x, y, t) = WOPmindes
312 (x, y, t), WOPmindes

123 (x, y, t) and WOPmindes
321 (x, y, t) as roots

of polynomial equations respectively.

4.1 The function WOPmindes
132 (x, y, t)

As we observed in Section 2,

WOPdes
132(x, y, t) = WOPmindes

132 (x, y, t),

Thus we have the following theorem.
Theorem 15.

WOPmindes
132 (x, y, t) = WOPmindes

231 (x, y, t) =

(1 + 2yt+ xyt− t− tx)−
√

(1 + 2yt+ xyt− t− tx)2 − 4(1− t+ ty)(t(y + xy))

2t(y + yx)

and ∑
π∈WOPn,k(132)

ymindes(π) =
1

k

(
n− 1

k − 1

) k−1∑
j=0

(
k

j

)(
n

k − 1− j

)
yk−1−j .

24



4.2 The function WOPmindes
231 (x, y, t)

Next consider WOPmindes
231 (x, y, t). Let

Cn(x, y) =
∑

π∈WOPn(231)

x`(π)ymindes(π).

We can classify the π = B1/ . . . /Bk ∈ WOPn(231) by the position i of n in the word of π. Assume
n ≥ 2.

Case 1. i = 1.
In this case w(π) starts with n which means that n must be in a part by itself so that B1 = {n}.
Then B1 will contribute a factor of xy since it will automatically cause a min-descent with B2.
Thus the ordered set partitions π ∈ WOPn(231) in Case 1 will contribute xyCn−1(x, y) to Cn(x, y).

Case 2. i = n.
In this case w(π) ends with n. Now if n is in a part by itself, then Bk = {n}. Thus there will not be
a min-descent between Bk−1 and Bk. Hence we will get a contribution of Cn−1(x, y) in this case. If
n ∈ Bk where |Bk| ≥ 2, then we can simply remove n from Bk and obtain an ordered set partition
in WOPn(231) with the same number of parts and the same number of min-descents. Thus the
ordered set partitions π ∈ WOPn(231) in Case 2 will contribute (1 + x)Cn−1(x, y) to Cn(x, y).

Case 3. 2 ≤ i ≤ n− 1.
In this case, n must be the last element in some part Bi. Because w(π) is 231-avoiding, it must be
the case that all the elements in B1/ . . . /Bi−{n}must be less than all the elements in Bi+1/ . . . /Bk.
If Bi = {n}, then Bi will contribute a factor of xy since Bi will cause a min-descent with Bi+1. Our
choices over all possibilities of B1/ . . . /Bi−1 will contribute a factor of Ci−1(x, y) and our choices
over all possible choices of Bi+1/ . . . /Bk will contribute a factor of Cn−i(x, y). Thus we will get a
contribution of xyCi−1(x, y)Cn−1(x, y) in this case. If |Bi| ≥ 2, then we can eliminate n from Bi.
Our choices over all possibilities of B1/ . . . /Bi − {n} will contribute a factor of Ci−1(x, y) and our
choices over all possible choices of Bi+1/ . . . /Bk will contribute a factor of Cn−i(x, y). Hence we
will get a contribution of Ci−1(x, y)Cn−1(x, y) in this situation. Thus the ordered set partitions
π ∈ WOPn(231) in Case 3 will contribute (1 + xy)Ci−1(x, y)Cn−i(x, y) to Cn(x, y).

It follows that for n ≥ 2,

Cn(x, y) = (1 + x+ xy)Cn−1(x, y) +

n−1∑
i=2

(1 + xy)Ci−1(x, y)Cn−i(x, y).

Hence,

WOPmindes
231 (x, y, t) = 1 + xt+

∑
n≥2

Cn(x, y)tn

= 1 + xt+ (1 + x+ xy)t
∑
n≥2

Cn−1(x, y)tn−1 + (1 + xy)t
∑
n≥2

n−1∑
k=2

Ck−1(x, y)Cn−k(x, y)

= 1 + xt+ (1 + x+ xy)t(WOPmindes
231 (x, y, t)− 1) + (1 + xy)t(WOPmindes

231 (x, y, t)− 1)2.

This gives us a quadratic equation in which we can solve to prove the following theorem.
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Theorem 16.

WOPmindes
231 (x, y, t) =

1 + t− tx+ txy −
√

(1 + t− tx+ txy)2 − 4(t+ txy)

2(t+ txy)
.

Below are the first few terms of WOPmindes
231 (x, y, t).

WOPmindes
231 (x, y, t) =

1 + xt+ (x+ (1 + y)x2)t2 + (x+ (3 + 2y)x2 + (1 + 3y + y2))t3 +

(x+ (6 + 3y)x2 + (6 + 12y + 3y2)x3 + (1 + 6y + 6y2 + y3)x4)t4 +(
x+ (10 + 4y)x2 + (20 + 30y + 6y2)x3 + (10 + 40y + 30y2 + 4y3)x4+

(1 + 10y + 20y2 + 10y3 + y4)x5
)
t5 + · · ·

4.3 The functions WOPmindes
213 (x, y, t) = WOPmindes

312 (x, y, t)

Note that the set WOP(213) is in bijection with WOP(132) by the action reverse-complement, so
we can work on the set WOP(132) and track the descent of the maximum number of blocks, or
maxdes of ordered set partitions in WOP(132) to compute the function WOPmindes

213 (x, y, t).

We denote generating function that tracks maxdes of WOP(132) by WOPmaxdes
132 (x, y, t). We shall

again classify the ordered set partitions π ∈ WOPn(132) by size of the last part and we will use
the notation from Figure 3. Now suppose that D(x, y, t) = WOPmaxdes

132 (x, y, t). In this case, we get
a factor of xtr from the last part {a1, . . . , ar}. Next we have to analyze when the last part from
any Ai will cause a max-descent in π. Let s be the smallest index i such that Ai is non-empty.
If s = r + 1, then there will be a max-descent from the last part of Ar+1 to {a1, . . . , ar} so that
we would get a factor of y(D(x, y, t) − 1). If s ≤ r, then the last part of As will not create a
max-descent with {a1, . . . , ar} so it will just contribute a factor of (D(x, y, t)− 1). However, each
non-empty Aj with j > s will create a max-descent between the last part of Aj and the first part of
the next non-empty Ai which immediately follows it so that each such Aj will contribute a factor
of 1 + y(D(x, y, t)− 1). Thus D = D(x, y, t) satisfies the following recursive relation.

D(x, y, t) = 1 +
∑
r≥1

xtr

(
(1 + y(D − 1) +

r∑
s=1

(D − 1)(1 + y(D − 1))r+1−s

)

= 1 + x(1 + y(D − 1))
∑
r≥1

tr

(
1 + (D − 1)

r∑
s=1

(1 + y(D − 1))r−s

)

= 1 + x(1 + y(D − 1))
∑
r≥1

tr
(

1 + (D − 1)
(1 + y(D − 1))r − 1

(1 + y(D − 1))− 1

)
= 1 + x(1 + y(D − 1))

∑
r≥1

tr
(

1− (1 + y(D − 1))r − 1

y

)
= 1 + x

(1 + y(D − 1))

y

∑
r≥1

tr (y − 1 + (1 + y(D − 1))r)

= 1 + x
(1 + y(D − 1))

y

(
t(y − 1)

1− t
+

t(1 + y(D − 1))

1− t(1 + y(D − 1))

)
= 1 +

tx

y
(1 + y(D − 1))

(
(y − 1)

1− t
+

(1 + y(D − 1))

1− t(1 + y(D − 1))

)
. (19)
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Clearing the fractions gives a quadric function in D which we can solve to show that

D(x, y, t) =
P (x, y, t))−

√
(Q(x, y, t)

R(x, y, t)
(20)

where

P (x, y, t) = 1− 2t+ t2 − tx+ 2ty − 2t2y + txy + 2t2xy − 2t2xy2

Q(x, y, t) = 1− 4t+ 6t2 − 4t3 + t4 − 2tx+ 4t2x− 2t3x+ t2x2 − 2txy +

4t2xy − 2t3xy − 2t2x2y + t2x2y2, and

R(x, y, t) = 2(ty − t2y + txy − t2xy2).

If we let f(x, y, t) = D(x, y, t)− 1, then (19) gives that

f(x, y, t) = x
t

y
(1 + yf)

(
y − 1

1− t
+

1 + yf

1− t(1 + yf)

)
. (21)

The Lagrange Inversion Theorem implies that the coefficient of xk in f(x, y, t), f(x, y, t)|xk , is given
by

f(x, y, t)|xk =
1

k
∆(x)k|xk−1 ,

where

∆(x) =
t

y
(1 + yx)

(
y − 1

1− t
+

1 + yx

1− t(1 + yx)

)
.

Thus

f(x, y, t)|xktn

=
1

k

tk

yk
(1 + yx)k

k∑
a=0

(
k

a

)
(y − 1)k−a

(1− t)k−a
(1 + xy)a

(1− t(1 + xy))a
|xk−1tn

=
1

k

1

yk

k∑
a=0

(
k

a

)
(y − 1)k−a

(1− t)k−a
(1 + xy)k+a

(1− t(1 + xy))a
|xk−1tn−k .

By Newton’s Binomial Theorem

1

(1− t)k−a
=

∑
u≥0

(
k − a+ u− 1

u

)
tu and

1

(1− t(1 + xy))a
=

∑
v≥0

(
a+ v − 1

v

)
tv((1 + xy)v.

It follows that

f(x, y, t)|xktn =

1

k

1

yk

k∑
a=0

n−k∑
v=0

(
k

a

)(
a+ v − 1

v

)(
k − a+ (n− k − v)− 1

n− k − v

)
(y − 1)k−a(1 + xy)k+a+v|xk−1 =

1

k

1

yk

k∑
a=0

n−k∑
v=0

(
k

a

)(
a+ v − 1

v

)(
k − a+ (n− k − v)− 1

n− k − v

)(
k + a+ v

k − 1

)
(y − 1)k−ayk−1 =

1

k

1

y

k∑
a=0

n−k∑
v=0

(
k

a

)(
a+ v − 1

v

)(
k − a+ (n− k − v)− 1

n− k − v

)(
k + a+ v

k − 1

)
(y − 1)k−a.
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Thus we have the following theorem.
Theorem 17.

WOPmindes
213 (x, y, t) = WOPmindes

312 (x, y, t) = WOPmaxdes
132 (x, y, t) =

P (x, y, t)−
√

(Q(x, y, t)

R(x, y, t)
, (22)

where

P (x, y, t) = 1− 2t+ t2 − tx+ 2ty − 2ty + txy + 2t2xy − 2t2xy2,

Q(x, y, t) = 1− 4t+ 6t2 − 4t3 + t4 − 2tx+ 4t2x− 2t3x+ t2x2 − 2txy +

4t2xy − 2t3xy − 2t2x2y + t2x2y2, and

R(x, y, t) = 2(ty − t2y + txy − t2xy2),

and

∑
π∈WOPn,k(213)

ymindes(π) =
1

k

1

y

k∑
a=0

n−k∑
v=0

(
k

a

)(
a+ v − 1

v

)(
k − a+ (n− k − v)− 1

n− k − v

)(
k + a+ v

k − 1

)
(y−1)k−a.

(23)

Below are the first few terms of WOPmindes
213 (x, y, t).

WOPmindes
213 (x, y, t) =

1 + xt+ (x+ (1 + y)x2)t2 + (x+ (3 + 2y)x2 + (1 + 3y + y2))t3 +

(x+ (6 + 3y)x2 + (5 + 13y + 3y2)x3 + (1 + 6y + 6y2 + y3)x4)t4 +(
x+ (10 + 4y)x2 + (15 + 35y + 6y2)x3 + (7 + 39y + 34Y 62 + 4y3)x4+

(1 + 10y + 20y2 + 10y3 + y4)x5
)
t5 + · · · .

We can compute the limit as y → 0 of WOPmindes
213 (x, y, t) to obtain the generating function of

ordered set partitions in WOPn(213) which have no min-descents. In this case, we obtain the
following corollary.
Corollary 18.

1 +
∑
n≥1

tn
∑

π∈WOPn(213),mindes(π)=0

x`(π) =
1 + t(−2 + t− tx)

1 + t2 − t(2 + x)
.

The first few terms of 1 +
∑

n≥1 t
n
∑

π∈WOPn(213),mindes(π)=0 x
`(π) are

1 + tx+ (x+ x2)t2 + (x+ 3x2 + x3)t3 + (x+ 6x2 + 5x3 + x4)t4 +

(x+ 10x2 + 15x3 + 7x4 + x5)t5 + (x+ 15x2 + 35x3 + 28x4 + 9x5 + x6)t6 +

(x+ 21x2 + 70x3 + 84x4 + 45x5 + 11x6 + x7)t7 +

(x+ 28x2 + 126x3 + 210x4 + 165x5 + 66x6 + 13x7 + x8)t8 +

(x+ 36x2 + 210x3 + 462x4 + 495x5 + 286x6 + 91x7 + 15x8 + x9)t9 + · · · .

Seting x = 1 in this series gives the sequence

1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, . . .
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which is sequence A001519 in the OEIS [11] which has a large number of combinatorial interpreta-
tions.

Given any sequence of positive numbers 1 ≤ b1 < b2 < · · · < bs, we let

A = A(x, y, t, q1, . . . , qs) = WOPmindes
213,{b1,...,bs}(x, y, t, q1, . . . , qs).

It follows from the part structure pictured in Figure 3 and our analysis above that

A = 1 +

s∑
i=1

xqit
bi(1 + y(A− 1) +

bi∑
a=1

(A− 1)(1 + y(A− 1))bi+1−a)

= 1 +

s∑
i=1

xqit
bi(1 + y(A− 1))

(
1 +

(1 + y(A− 1))bi − 1

y

)
.

If we set F = F (x, y, t, q1, . . . , qs) = A(x, y, t, q1, . . . , qs)− 1, then we see that

F = x

s∑
i=1

qit
bi(1 + yF )

(
1 +

(1 + yF )bi − 1

y

)
.

It follows from the Lagrange Inversion Theorem that

F |xk =
1

k
δk(x)|xk−1

where δ(x) =
∑s

i=1 qit
bi(1 + yx)

(
1 + (1+yx)bi−1

y

)
.

One can use this expression to show that if α1, . . . , αs are non-negative integers such that
∑s

i=1 = k
and

∑s
i=1 αibi = n, then

F |xktnqα11 ···q
αs
s

=
1

k

(
k

α1, . . . , αs

)
(1 + xy)k

yk

s∏
i=1

(
(1 + xy)bi − 1

)αi
|xk−1 .

Hence it is possible to get a closed expression for Fxktnqα11 ···q
αs
s

. We shall omit the details since it is
messy.

4.4 The function WOPmindes
123,{1,2}(x, y, t, q1, q2)

Next let us consider the computation of the generating function

A(x, y, t, q1, q2) = WOPmindes
123,{1,2}(x, y, t, q1, q2).

We will again consider that the case analysis of elements π = B1/ . . . /Bj ∈ WOPn,{1,2}(123) by
the first return of the path Ψ(w(π)) so we will keep the same notation. That is we shall assume
the first return is at (n− k, k), B1/ . . . /Bi are the parts containing the numbers {k+ 1, . . . , n} and
Bi+1/ . . . /Bj are the parts containing the number {1, . . . , k}.

Case 1. The first return of P is at the point (1, n− 1).

29



In this case, we showed that B1 = {n}. is xtq1(1 + y(A(x, y, t, q1, q2) − 1). If n = 1, then we
get a contribution of xtq1 and otherwise, n will cause a min-descent between B1 and B2 which will
give a contribution of xtq1y(A(x, y, t, q1, q2)− 1). Thus, the contribution in this case is

A(x, y, t, q1, q2).

Case 2. The first return of P is at the point (2, n− 2).

In this case, we showed that either B1 = {n − 1} and B2 = {n} or B1 = {n − 1, n}. It is easy to
see that in the first case, the contribution to A(x, y, t, q1, q2) is x2t2q21(1 + y(A(x, y, t, q1, q2) − 1).
That is, if n = 2, then we get a contribution of x2t2q21 and otherwise, B2 will cause a min-descent
between B2 and B3 which will give a contribution of x2t2q21(y(A(x, y, t, q1, q2)−1). Similarly, in the
second case the contribution to A(x, y, t, q1, q2) is xt2q2(1 + y(A(x, y, t, q1, q2)− 1)) as there will be
min-descent between B1 and B2 if B2 exists. Thus the total contribution to A(x, y, t, q1, q2) from
Case 2 is

(x2t2q21 + xt2q2)(1 + y(A(x, y, t, q1, q2)− 1)).

Case 3. k < n− 2 and k + 1 is in column n− k − 1.
In this case, we have the situation pictured in Figure 9. Thus w(π) = w1 . . . wn where wn−k−1 = k+1
and wn−k = p where k+1 < p. It follows that either Bi = {k+1, p} or Bi−1 = {k+1} and Bi = {p}.
We claim that the contribution to A(x, y, t, q1, q2) in the first case where Bi = {k + 1, p} is

y(A(x, y, t, q1, q2)− 1)xt2q2(1 + y(A(x, y, t, q1, q2)− 1)).

That is, the first factor of y comes from the fact that there is a min-descent between Bi−1 and Bi
since the first element of Bi is k + 1 which is the smallest element in B1/ . . . /Bi. The next factor
(A(x, y, t, q1, q2)− 1) comes from summing over the weights of the reductions of B1/ . . . /Bi−1 over
all possible choices of B1/ . . . /Bi−1. The factor xt2q2 comes from Bi. If Bi+1/ . . . /Bj is empty
then we get a factor of 1 and, if Bi+1/ . . . /Bj is not empty, then we get a factor of y, coming
from the fact that the minimal element of Bi which is k + 1 is greater than the minimal element
of Bi+1 which is some element in {1, . . . , k}, and a factor of (A(x, y, t, q1, q2)− 1) coming summing
the weights over all possible choices of Bi+1/ . . . /Bj .

A similar reasoning will show that the contribution to A(x, y, t, q1, q2) in the first case where Bi−1 =
{k + 1} and Bi = {p} is

y(A(x, y, t, q1, q2)− 1)x2t2q21(1 + y(A(x, y, t, q1, q2)− 1)).

Thus the total contribution to A(x, y, t, q1, q2) in Case 3 is

y(A(x, y, t, q1, q2)− 1)(xt2q2 + x2t2q21)(1 + y(A(x, y, t, q1, q2)− 1)).

At this point, our analysis differs from our analysis in WOP123,{1,2}(x, y, t, q1, q2).

Case 4 k < n− 2, k + 1 is in column r = n− k − 2 and Bi−1 = {k + 1, p1}.
Refer to Figure 10, the word w(π) = w1 . . . wn where wn−k−2 = k+ 1 and wn−k−1 = p1, wn−k = p2,
where k + 1 < p2 < p1. It follows that Bi = {p2}. Since Bi−1 = {k + 1, p1}, there will be no
min-descent between Bi−1 and Bi. Refer to the Dyck path structure in Figure 15 that if the path
ends with 3 right steps RRR and it does not have a return, then there are two sub-Dyck path
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component denoted B in the picture – the part tracking back from last step before the last down
step to the step that it first reaches the first diagonal, and the part from the next step back to the
start point. The corresponding part in ordered set partition side is parts B1, . . . , Bi−2 that can be
seen as 2 ordered set partitions that avoid 123, whose contribute is (1 + y(A(x, y, t, q1, q2) − 1))2.
The contribution of part Bi−1 and Bi is t3q1q2 and the contribution of blocks Bi+1/ . . . /Bj is
(1 + y(A(x, y, t, q1, q2)− 1)) for the same reason as Case 3. Thus the contribution of this case is

(1 + y(A(x, y, t, q1, q2)− 1))2xt3q1q2(1 + y(A(x, y, t, q1, q2)− 1)).

Case 5. k < n− 2 and π does not satisfy Case 4.

B

B

Figure 15: The situation in Case 3.

This case is similar to Case 4 of analysis of WOPdes
123,{1,2}(x, y, t, q1, q2) in Section 3. In this case, Bi

must be a singleton, and we claim that the contribution of this case is

y
(
A(x, y, t, q1, q2)− 1− xtq1(1 + y(A(x, y, t, q1, q2)− 1))− xt2q2(1 + y(A(x, y, t, q1, q2)− 1))2

)
·xtq1(1 + y(A(x, y, t, q1, q2)− 1)).

That is, the first factor of y comes from the fact that there is a descent caused by the last element
of Bi−1 and the element in Bi. The next factor comes summing over the weights of the reductions
of B1/ . . . /Bi−1 over all possible satisfying choices of B1/ . . . /Bi−1. The contribution of part Bi is
tq1 and the last factor (1 + y(A(x, y, t, q1, q2)− 1)) is the contribution of blocks Bi+1/ . . . /Bj .

Adding up the contribution lead to the following theorem.
Theorem 19. The function WOPmindes

123,{1,2}(x, y, t, q1, q2) is the root of the following degree 3 polyno-
mial equation about A,

A = 1 + txq1(1 + y(A− 1)) + (t2xq2 + t2x2q21)(1 + y(A− 1))2 + t3xq1q2(1 + y(A− 1))3

+ txyq1(1 + y(A− 1))(A− 1− txq1(1 + y(A− 1))− t2xq2(1 + y(A− 1))2).

4.5 The function WOPmindes
321 (x, y, t)

We write C(x, y, t) = WOPmindes
321 (x, y, t). To study the function C(x, y, t), we use the fact that the

reverse of the word of any π ∈ WOP(321) is 123-avoiding. In other word, if we let WOP(123) be
the set of ordered set partitions whose numbers are organized in decreasing order inside each part
and the word is 123-avoiding, then each π ∈ WOP(321) is correspond with a π̄ ∈ WOP(123). The
pdes of π is then equal to the rise of the minimal elements of consecutive blocks (or minrise) of π̄.
We want to work on WOP(123) and the statistic minrise to compute the function C(x, y, t).

We also need to define C`(x, y, t) as the generating functions tracking the number of minrise without
tracking the minrise caused by the last two parts of ordered set partitions in WOP(123) that

C`(x, y, t) = 1 +
∑
n≥1

tn
∑

π∈WOPn(123)

x`(π)y|{i:i<`(π)−1,Bi<minBi+1}|.
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We will always use C and C` for short of C(x, y, t) and C`(x, y, t).

We begin with studying the function C(x, y, t). Note that the action lift defined in Section 3 keeps
the min-descents for any ordered set partitions in WOPn(123), which makes it possible to do
recursions of WOPn(123) using the Dyck path bijection. For any π = B1/ · · · /Bm ∈ WOPn(123),
we let w(π) = w1 · · ·wn ∈ Sn(123). Let the first return of the corresponding Dyck path be at the
n− kth column and let the number wn−k be in the block Bi.

Then there are 5 Cases.

Case 1. Bi has size 1 and wn−k−1 = k + 1.
In this case, there is a minrise between part Bi−1 and Bi. The numbers before k + 1 reduce to
an ordered set partition in WOPn−k−2(123). There are two possibility that Bi−1 either only has
the number k + 1 or contains other numbers, and in the later case the minrise caused by last two
parts in the previous numbers will not be count. Thus the contribution of numbers before k + 1
to function C(x, y, t) is tx(C + C`−1

x ). Since the numbers after wn−k can form any ordered set
partitions inWOPk(123) and the minrise is not affected, we have that the contribution to function
C(x, y, t) of this case is

t2x2y

(
C +

C` − 1

x

)
C.

Case 2. Bi has size> 1 and wn−k−1 = k + 1.
In this case, Bi contains no numbers in {w1, . . . , wn−k−1} and there will not be a minrise between
part Bi−1 and Bi. The contribution of the numbers before wn−k is tx(C+ C`−1

x ), and the contribu-
tion of the numbers from wn−k is tx

(
C−1
x

)
, and the contribution to function C(x, y, t) of this case

is

t2x2
(
C +

C` − 1

x

)(
C − 1

x

)
.

Case 3. Bi has size 1 and wn−k−1 6= k + 1.
In this case, there will not be a minrise between part Bi−1 and Bi. The contribution of the numbers

before wn−k is
(
C − tx

(
C + C`−1

x

))
. Since the numbers after wn−k forms an ordered set partition

in WOPk(123) and the first part can either joint the number wn−k or not without changing the
minrise, thus the contribution of the numbers from wn−k is tx

(
C + C−1

x

)
, and the contribution to

function C(x, y, t) of this case is

tx

(
C +

C − 1

x

)(
C − tx

(
C +

C` − 1

x

))
.

Case 4. wn−k−1 ∈ Bi but wn−k+1 /∈ Bi.
In this case, there will not be a minrise between part Bi−1 and Bi. We have wn−k 6= k + 1 and
wn−k−1 6= k+1 in order to satisfy that wn−k−1 ∈ Bi. wn−k+1 /∈ Bi implies that the first part of the
ordered set partition after wn−k does not joint the number wn−k. Thus the numbers up tp wn−k

contributes t
(
C − 1− tx

(
C + C`−1

x

))
and the numbers after wn−k contributes C to the function

C(x, y, t). Thus the total contribution of this case is

tC

(
C − 1− tx

(
C +

C` − 1

x

))
.

Case 5. wn−k−1 ∈ Bi and wn−k+1 ∈ Bi.
In this case, there will still be no minrise between part Bi−1 and Bi. We have wn−k 6= k + 1 and
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wn−k−1 6= k+1 in order to satisfy that wn−k−1 ∈ Bi. wn−k+1 ∈ Bi implies that the first part of the
ordered set partition after wn−k joints the number wn−k. As part Bi connects the numbers before
wn−k and the numbers after wn−k, the mindes caused by the last two parts before wn−k will not

be count. Thus the numbers up tp wn−k contributes t
(
C` − 1− tx

(
C + C`−1

x

))
and the numbers

after wn−k contributes C−1
x to the function C(x, y, t). The total contribution of this case is

t

(
C − 1

x

)(
C` − 1− tx

(
C +

C` − 1

x

))
.

Summing over all the five cases, we have that

C(x, y, t) = 1 + (y − 1)t2x2C

(
C +

C` − 1

x

)
+ txC

(
C +

C − 1

x

)
+tC

(
C − 1− tx

(
C +

C` − 1

x

))
+ t

(
C − 1

x

)(
C` − 1− tx

(
C +

C` − 1

x

))
.

We can do similar analysis for C`(x, y, t). We have the following 7 cases, of which the first 5 cases
are similar to that of C(x, y, t).

Case 1. Bi has size 1, wn−k−1 = k + 1 and k > 0.
The argument is same as Case 1 of C(x, y, t) except that the contribution of the numbers after
wn−k is C` − 1 instead of C, since k > 0 implies that Bi+1 is not empty, and we are not counting
the minrise between the last two parts of π.Thus the contribution to C`(x, y, t) of this case is

t2x2y

(
C +

C` − 1

x

)
(C` − 1).

Case 2. Bi has size> 1 and wn−k−1 = k + 1.

Similar to Case 2 of C(x, y, t) that the contribution is t2x2
(
C + C`−1

x

)(
C`−1
x

)
. The only difference

is that the contribution of numbers after wn−k is C`−1
x instead of C−1

x as we are not counting the
minrise of last two parts.

Case 3. Bi has size 1, wn−k−1 6= k + 1 and k > 0.

Similar to Case 3 of C(x, y, t) that the contribution is tx
(
C` − 1 + C`−1

x

)(
C − tx

(
C + C`−1

x

))
.

The difference is that the contribution of numbers after wn−k is
(
C` − 1 + C`−1

x

)
as we are not

counting the minrise of last two parts and the collection of numbers after wn−k is not empty.

Case 4. wn−k−1 ∈ Bi, wn−k+1 /∈ Bi and k > 0.

Similar to Case 4 of C(x, y, t) that the contribution is t(C` − 1)
(
C − 1− tx

(
C + C`−1

x

))
. The

difference is that the contribution of numbers after wn−k is (C` − 1) since k > 0 implies that the
collection of numbers after wn−k is not empty.

Case 5. wn−k−1 ∈ Bi and wn−k+1 ∈ Bi.
Similar to Case 5 of C(x, y, t) that the contribution is t

(
C`−1
x

)(
C` − 1− tx

(
C + C`−1

x

))
. The

difference is that the contribution of numbers after wn−k is C`−1
x as we are not counting the minrise

of last two parts.

Case 6. k = 0 and wn−k−1 /∈ Bi.
In this case, Bi has only the number wn−k. Since we are not counting the descents of the last two
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parts, we do not care whether wn−k is bigger or smaller than the minimum of the previous last
part. The contribution of this case will be txC.

Case 7. k = 0 and wn−k−1 ∈ Bi.
In this case, Bi can be seen as enlarging the last block before the number wn−k to wn−k. The last
minrise before wn−k will not be counted, and wn−k, wn−k−1 6= k + 1. The contribution of this case

is t
(
C` − 1− tx

(
C + C`−1

x

))
.

Summing over all the 7 cases, we have that

C`(x, y, t) = 1 + (y − 1)t2x2(C` − 1)

(
C +

C` − 1

x

)
+ txC

(
C` − 1 +

C` − 1

x

)
+ txC

+t

(
C` − 1− tx

(
C +

C` − 1

x

))
+ tx

(
C` − 1 +

C` − 1

x

)(
C − tx

(
C +

C` − 1

x

))
+t(C` − 1)

(
C − 1− tx

(
C +

C` − 1

x

))
.

With these equations about C(x, y, t) and C`(x, y, t) computed, we can compute the Groebner basis
of the functions to find an equation that C(x, y, t) satisfies, and we have the following theorem.
Theorem 20. The function WOPmindes

321 (x, y, t) is the root of the following degree 4 polynomial
equation about C,

1 + t(−1 + t− t2 + x(2 + 2x− xy))
+ C

(
−2 + t(−3 + t(3 + x(−4 + 3x(−2 + y))) + x(−5 + x(−3 + y)) + t2(2 + x(3 + 3x− 2xy)))

)
+ C2

(
1 + t((3 + x)2 − t3(−3 + x2) + t(3 + x)(−1 + 2x(1 + x))

−t2(10 + x(6 + x(3 + x(4 + x(−2 + y)(−1 + y)− 3y)− y))))
)

+C3t
(
−5− 3x+ t(−7− x(8 + x(3 + x)(1 + y)) + t2(−6 + x(−6 + x(−3 + 5y + x(1 + x+ y − xy))))

+t(18 + x(17 + x(6− 6y + x(2 + x− (4 + x)y))))))
+ C4t2(2 + x− t(1 + x+ x2) + tx2y)

(
3 + 2x+ t(−3− x(3 + x) + x2(2 + x)y)

)
= 0.

5 Generating functions for p-descents

In this section, we shall study the generating functions WOPpdes
α (x, y, t) for certain α ∈ S3. Based

on the analysis in Section 2, we need to study the following 4 kinds of generating functions,

WOPpdes
132 (x, y, t) = WOPpdes

213 (x, y, t),

WOPpdes
231 (x, y, t) = WOPpdes

312 (x, y, t),

WOPpdes
123 (x, y, t) , WOPpdes

321 (x, y, t).

We are able to solve the function WOPpdes
132 (x, y, t) = WOPpdes

213 (x, y, t), and write the functions

WOPpdes
231 (x, y, t) = WOPpdes

312 (x, y, t) and WOPpdes
321 (x, y, t) as roots of polynomial equations respec-

tively. We don’t have results about the function WOPpdes
123 (x, y, t).

5.1 The functions WOPpdes
132 (x, y, t) = WOPpdes

213 (x, y, t)

As we observed in Section 2,

WOPpdes
132 (x, y, t) = WOPmaxdes

132 (x, y, t),
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Thus we have the following theorem.
Theorem 21.

WOPpdes
132 (x, y, t) = WOPpdes

213 (x, y, t)

= WOPmaxdes
132 (x, y, t) = WOPmindes

213 (x, y, t) = WOPmindes
312 (x, y, t)

=
P (x, y, t)−

√
(Q(x, y, t)

R(x, y, t)
,

where

P (x, y, t) = 1− 2t+ t2 − tx+ 2ty − 2ty + txy + 2t2xy − 2t2xy2,

Q(x, y, t) = 1− 4t+ 6t2 − 4t3 + t4 − 2tx+ 4t2x− 2t3x+ t2x2 − 2txy +

4t2xy − 2t3xy − 2t2x2y + t2x2y2, and

R(x, y, t) = 2(ty − t2y + txy − t2xy2),

and

∑
π∈WOPn,k(132)

ypdes(π) =
1

k

1

y

k∑
a=0

n−k∑
v=0

(
k

a

)(
a+ v − 1

v

)(
k − a+ (n− k − v)− 1

n− k − v

)(
k + a+ v

k − 1

)
(y−1)k−a.

(24)

5.2 The functions WOPpdes
231 (x, y, t) = WOPpdes

312 (x, y, t)

We compute the function WOPpdes
312 (x, y, t) as a representative of this equivalent class. We write

D(x, y, t) = WOPpdes
312 (x, y, t) for our convenience in the analysis. As this is different from the

132-avoiding case, we will consider a new structure for the set WOP(312).

Given any ordered set partition π ∈ B1/ . . . /Bk ∈ WOPn(312), if the size n = 0, then it contributes
1 to the function D(x, y, t). Otherwise, π has at least one part and we suppose the last part
Bk = {a1, a2, . . . , ar} has r ≥ 1 numbers. Note that there will not be any number number a > a2
in the previous blocks B1, . . . , Bk−1, otherwise the subsequence (a, a1, a2) of w(π) is a 312-match.
Thus, the subsequence {a2, . . . , ar} must be a consecutive integer sequence.

Now, We divide the numbers in the previous blocks B1, . . . , Bk−1 into 2 sets, A1 = {1, . . . , a1 − 1}
be the numbers smaller than a1 and A2 = {a1 + 1, . . . , a2 − 1} be the numbers bigger than a1.
The numbers in set A1 must appear before the numbers in set A2 as otherwise there will be a
312-match in the word. Thus, an ordered set partition π = B1/ . . . /Bk ∈ WOPn(312) has the
structure pictured in Figure 16.

We let Ai(π) the restriction of π in set Ai, then each Ai(π) is also an ordered set partition in
WOP(312). However, if both Ai’s are not empty, then it is possible that the last block of A1 joints
the first block of A2. In that case, the pdes caused by the last two blocks in A1 (if there is) and the
pdes caused by the first two blocks in A2 (if there is) will not be count in the number of pdes in
π. We let D`(x, y, t), Df (x, y, t) and D`f (x, y, t) be the generating functions tracking the number
of pdes without tracking the pdes caused by the last two parts, the first two parts, and both last
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A1

A2

∅

∅
∅

a1

a2

ar−1

ar

B1 · · ·Bk−1 Bk

Figure 16: Structure of an ordered set partition in WOP(312)

and first two parts that

D`(x, y, t) = 1 +
∑
n≥1

tn
∑

π∈WOPn(312)

x`(π)y|{i:i<`(π)−1,Bi>pBi+1}|,

Df (x, y, t) = 1 +
∑
n≥1

tn
∑

π∈WOPn(312)

x`(π)y|{i:i>1,Bi>pBi+1}|,

D`f (x, y, t) = 1 +
∑
n≥1

tn
∑

π∈WOPn(312)

x`(π)y|{i:1<i<`(π)−1,Bi>pBi+1}|,

then we can compute the recursive equations of functions D(x, y, t), D`(x, y, t), Df (x, y, t) and
D`f (x, y, t) respectively.

We first consider the function D(x, y, t).

Case 1. The last part Bk has size> 1.
Then there will always be no pdes involving part Bk as the last part will contain the number a2
greater than any numbers in B1, . . . , Bk−1. The last part has contribution tx2 + tx3 + · · · = tx2

1−t ,

and the contribution of B1, . . . , Bk−1 is D2(x, y, t) when the last block in A1 does not joint the

first block of A2, and
(D`(x,y,t)−1)(Df (x,y,t)−1)

x when the last block in A1 joints the first block of A2.
Thus, The contribution of this case to the function D(x, y, t) is

tx2

1− t

(
D2(x, y, t) +

(D`(x, y, t)− 1)(Df (x, y, t)− 1)

x

)
.

Case 2. Bk has size 1, A2 part only contains 1 block and joints with part A1.
In this case, the set A1 cannot be empty and there will still be no pdes caused by the last two parts
of π. The contribution will be

tx

(
(D`(x, y, t)− 1)

t

1− t

)
.

Case 3. Bk has size 1, A2 is empty.
In this case, there will be no pdes caused by the last two parts of π and the contribution will be

txD(x, y, t).

Case 4. Bk has size 1, and π does not satisfy Case 2 and 3.
In this case, there will be a pdes caused by the last two parts of π. Considering it is possible that
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the last block of A1 joints the first block of A2, we can compute that the contribution of this case
is

txy

(
D(x, y, t)(D(x, y, t)− 1) +

(D`(x, y, t)− 1)(Df (x, y, t)− tx
1−t − 1)

x

)
.

Summing over all the 4 cases, and we write D,D`, Df , D`f on the right hand side for short of
D(x, y, t), D`(x, y, t), Df (x, y, t), D`f (x, y, t), then we have

D(x, y, t) = 1+
tx

1− t

(
D2 +

(D` − 1)(Df − 1)

x

)
+(y−1)tx

(
D(D − 1) +

(D` − 1)(Df − tx
1−t − 1)

x

)
.

Then for the function D`(x, y, t), we do not need to consider the contribution involving part Bk,
thus the analysis is like Case 1 of function D(x, y, t) and we have

D`(x, y, t) = 1 +
tx

1− t

(
D2 +

(D` − 1)(Df − 1)

x

)
.

For the function Df (x, y, t), we have similar cases to function D(x, y, t), but one more case when
last part is of size 1.

Case 1. The last part Bk has size> 1.
Then there will always be no pdes involving part Bk. The last part has contribution tx2

1−t , and the
contribution of B1, . . . , Bk−1 is (Df (x, y, t)−1)D(x, y, t) when A1 is not empty and the last block in

A1 does not joint the first block of A2, and Df (x, y, t) when A1 is empty, and
(D`f (x,y,t)−1)(Df (x,y,t)−1)

x
when the last block in A1 joints the first block of A2. Thus, The contribution of this case to the
function D(x, y, t) is

tx2

1− t

(
(Df (x, y, t)− 1)D(x, y, t) +Df (x, y, t) +

(D`f (x, y, t)− 1)(Df (x, y, t)− 1)

x

)
.

Case 2. Bk has size 1, A2 part only contains 1 block and joints with part A1.
In this case, the set A1 cannot be empty and there will still be no pdes caused by the last two parts
of π. The contribution will be

tx

(
(D`f (x, y, t)− 1)

t

1− t

)
.

Case 3. Bk has size 1, A2 is empty.
In this case, there will be no pdes caused by the last two parts of π and the contribution will be

txDf (x, y, t).

Case 4. Bk has size 1, A1 is empty, and A2 only has one block.
In this case, the pdes caused by the only two parts of π is not counted as we do not count the first
pdes.

tx
tx

1− t
.

Case 5. Bk has size 1, and the numbers in sets A1, A2 does not satisfy Case 2, 3 and 4.
In this case, there will be a pdes caused by the last two parts of π. Considering it is possible that
the last block of A1 joints the first block of A2, we can compute that the contribution of this case is

txy

(
(Df (x, y, t)− 1)(D(x, y, t)− 1) + (Df (x, y, t)− 1− tx

1−t) +
(D`f (x,y,t)−1)(Df (x,y,t)− tx

1−t−1)
x

)
.
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Summing over all the 5 cases, and we write D,D`, Df , D`f on the right hand side for short of
D(x, y, t), D`(x, y, t), Df (x, y, t), D`f (x, y, t), then we have

Df (x, y, t) = 1 + tx
1−t

(
(Df − 1)D +Df +

(D`f−1)(Df−1)
x

)
+ (y − 1)tx

(
(Df − 1)D − tx

1−t +
(D`f−1)(Df− tx

1−t−1)
x

)
.

For the function D`f (x, y, t), we do not need to consider the contribution involving part Bk, thus
the analysis is like Case 1 of function Df (x, y, t) and we have

D`f (x, y, t) = 1 +
tx

1− t

(
(Df − 1)D +Df +

(D`f − 1)(Df − 1)

x

)
.

With these equations about D(x, y, t), D`(x, y, t), Df (x, y, t) and D`f (x, y, t) computed, we can
compute the Groebner basis of the functions to find an equation that D(x, y, t) satisfies, and we
have the following theorem.
Theorem 22. We have the following equations about D(x, y, t), D`(x, y, t), Df (x, y, t) and D`f (x, y, t),

D(x, y, t) = 1 + tx
1−t

(
D2 +

(D`−1)(Df−1)
x

)
+ (y − 1)tx

(
D(D − 1) +

(D`−1)(Df− tx
1−t−1)

x

)
,

D`(x, y, t) = 1 + tx
1−t

(
D2 +

(D`−1)(Df−1)
x

)
,

Df (x, y, t) = 1 + tx
1−t

(
(Df − 1)D +Df +

(D`f−1)(Df−1)
x

)
+ (y − 1)tx

(
(Df − 1)D − tx

1−t +
(D`f−1)(Df− tx

1−t−1)
x

)
,

D`f (x, y, t) = 1 + tx
1−t

(
(Df − 1)D +Df +

(D`f−1)(Df−1)
x

)
,

and the function WOPpdes
312 (x, y, t) is the root of the following degree 3 polynomial equation about D,

1− t+D(−1 + t)(1 + t(1 + 2x(−1 + y))) +D2(1− t)t
(
1 + tx2(−1 + y)2 + x(−1 + t(−1 + y) + 2y)

)
+D3t2x(−1 + y)(−1 + t(1 + x(−1 + y))− xy) = 0.

5.3 The function WOPpdes
321 (x, y, t)

We write D(x, y, t) = WOPpdes
321 (x, y, t). As we defined in Section 4.5, WOP(123) is the set of

ordered set partitions whose numbers are organized in decreasing order inside each part and the
word is 123-avoiding. Each π ∈ WOP(321) is correspond with a π̄ ∈ WOP(123), and the pdes of
π is then equal to the part-rise (or prise) of π̄. We want to work on WOP(123) and the statistic
prise to compute the function D(x, y, t).

We also need to define D`(x, y, t), Df (x, y, t) and D`f (x, y, t) as the generating functions tracking
the number of prise without tracking the prise caused by the last two parts, the first two parts,
and both last and first two parts of ordered set partitions in WOP(123) that

D`(x, y, t) = 1 +
∑
n≥1

tn
∑

π∈WOPn(123)

x`(π)y|{i:i<`(π)−1,Bi<pBi+1}|,

Df (x, y, t) = 1 +
∑
n≥1

tn
∑

π∈WOPn(123)

x`(π)y|{i:i>1,Bi<pBi+1}|,

D`f (x, y, t) = 1 +
∑
n≥1

tn
∑

π∈WOPn(123)

x`(π)y|{i:1<i<`(π)−1,Bi<pBi+1}|.
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We will always use D, D`, Df and D`f for short of D(x, y, t), D`(x, y, t), Df (x, y, t) and D`f (x, y, t).
As we are generally looking at the same cases as Section 4.5, we shall briefly describe our idea about
the recursions of the 4 functions.

For any π = B1/ · · · /Bm ∈ WOPn(123), we let w(π) = w1 · · ·wn ∈ Sn(123). Let the first return
of the corresponding Dyck path be at the n− kth column and let the number wn−k be in the block
Bi.

For the function D(x, y, t), there are 4 Cases similar to Section 4.5. We will directly give the
contribution of each case to function D(x, y, t).

Case 1. both Bi−1 and Bi are of size 1.
The contribution to function D(x, y, t) is t2x2yD2.

Case 2. wn−k−1 /∈ Bi but π does not satisfy Case 1.

The contribution to function D(x, y, t) is txD
(
D +

Df−1
x

)
− t2x2D2.

Case 3. wn−k−1 ∈ Bi but wn−k+1 /∈ Bi.
The contribution to function D(x, y, t) is

(
D − 1− xt

(
D + D`−1

x

))
· tD.

Case 4. wn−k−1 ∈ Bi and wn−k+1 ∈ Bi.
The contribution to function D(x, y, t) is

(
D` − 1− xt

(
D + D`−1

x

))
· tDf−1x .

Summing over all the 4 cases, we have that

D(x, y, t) = 1 + t2x2(y − 1)D2 + txD

(
D +

Df − 1

x

)
+tD

(
D − 1− xt

(
D +

D` − 1

x

))
+t

(
Df − 1

x

)(
D` − 1− xt

(
D +

D` − 1

x

))
.

For the function D`(x, y, t), there are 6 Cases.

Case 1. both Bi−1 and Bi are of size 1, and k > 0.
The contribution to function D`(x, y, t) is t2x2yD(D` − 1).

Case 2. wn−k−1 /∈ Bi and k > 0, but π does not satisfy Case 1.

The contribution to function D`(x, y, t) is txD
(
D` − 1 +

D`f−1
x

)
− t2x2D(D` − 1).

Case 3. wn−k−1 ∈ Bi and k > 0, but wn−k+1 /∈ Bi.
The contribution to function D`(x, y, t) is

(
D − 1− xt

(
D + D`−1

x

))
· t(D` − 1).

Case 4. wn−k−1 ∈ Bi and wn−k+1 ∈ Bi.
The contribution to function D`(x, y, t) is

(
D` − 1− xt

(
D + D`−1

x

))
· tD`f−1x .

Case 5. k = 0 and wn−k−1 /∈ Bi.
The contribution to function D`(x, y, t) is txD.

Case 6. k = 0 and wn−k−1 ∈ Bi.
The contribution to function D`(x, y, t) is t

(
D` − 1− tx

(
D + D`−1

x

))
.
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Summing over all the 6 cases, we have that

D`(x, y, t) = 1 + txD + t2x2(y − 1)D(D` − 1) + txD

(
D` − 1 +

D`f − 1

x

)
+t(D` − 1)

(
D − 1− xt

(
D +

D` − 1

x

))
+t

(
D`f − 1

x

)(
D` − 1− xt

(
D +

D` − 1

x

))
+t

(
D` − 1− tx

(
D +

D` − 1

x

))
.

The functions Df (x, y, t) and D`f (x, y, t) have exactly the same 4 cases and 6 cases as D(x, y, t)
and D`(x, y, t). The main difference on the right hand side expansion is that some D and D`

becomes Df and D`f . We omit the classification of cases and organize the terms of the expressions
of Df (x, y, t) and D`f (x, y, t) in the same way as functions D(x, y, t) and D`(x, y, t), then we have

Df (x, y, t) = 1 + t2x2(y − 1)(Df − 1)D + txDf

(
D +

Df − 1

x

)
+tD

(
Df − 1− xt

(
Df +

D`f − 1

x

))
+t

(
Df − 1

x

)(
D`f − 1− xt

(
Df +

D`f − 1

x

))
,

and

D`f (x, y, t) = 1 + txDf + t2x2(y − 1)(Df − 1)(D` − 1) + txDf

(
D` − 1 +

D`f − 1

x

)
+t(D` − 1)

(
Df − 1− xt

(
Df +

D`f − 1

x

))
+t

(
D`f − 1

x

)(
D`f − 1− xt

(
Df +

D`f − 1

x

))
+t

(
D`f − 1− tx

(
Df +

D`f − 1

x

))
.

With the recursive equations of the four functions computed, one can compute the Groebner basis
of the functions to find an equation that D(x, y, t) satisfies, and we have the following theorem.

Theorem 23. The function WOPpdes
321 (x, y, t) is the root of the following degree 6 polynomial equa-

tion about D,

D((−1+D)x+tD(−1−D2(1+x)2+2DD(1+x+x2(−1+y)D)−2x2(−1+y)D)+D3t5x5(−1+y)3+
D2t4x3(−1 +y)2(−2 + 2D(1 +x) +x(1 +x−xy)) + t2D(1 +x+D(−2 +x(2(−2 +y) +x(4 +x(−1 +
y))(−1 + y)))− xD(x2(−1 + y)2 + yD)−D2(1 + x)(−1 + x(−2 + 3x(−1 + y) + y))D) +Dt3x(−1 +
y)D(1+D2(1+x)2 +2x(−1+x(−1+y))+DD(−2+x2(4+3x−2y−3xy)D)D)D)D(1+DD(−2+
DD(1 + tD(1 + x− tD(1 + x+ x2D) +D(−1 + t)D(1 + x+ tx2(−1 + y)D) + tx2yD)D)D)D) = 0
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6 Results on parking functions

A North-East n × n Dyck path is a lattice path from (0, 0) to (n, n) consisting of east and north
steps which stays above the diagonal y = x.

We can get an n× n parking function by labeling the cells east of and adjacent to a north step of
a Dyck path with numbers {1, . . . , n} such that the numbers in each column is increasing. On the
other hand, we can take a parking function as a combination of a Dyck path and an ordered set
partition of same part size composition. Figure 17 is an example of a parking function of size 5.

+
1

3

4

5

2
⇒

1

3

4

5

2

Figure 17: The construction of a parking function.

We say that a parking function avoids a permutation pattern if and only if the ordered set partition
of the parking function word-avoids the pattern. We studied pattern avoidance in parking functions
in this way and we have the following theorem.
Theorem 24. Let pfn(123) be the number of n × n parking functions avoid pattern 123 and let
pfn,k(123) be the number of n× n parking functions with k columns that avoid pattern 123, then

pfn,k(123) =
1

(k + 1)(n− k + 1)

(
n

k

)(
k

n− k

)(
2k

k

)
=

Ck
n− k + 1

(
n

k

)(
k

n− k

)
.

and

pfn(123) =

n∑
k=n

2

1

(k + 1)(n− k + 1)

(
n

k

)(
k

n− k

)(
2k

k

)

=
n∑

k=n
2

Ck
n− k + 1

(
n

k

)(
k

n− k

)
,

here Ck is the kth Catalan number.

Proof. From Theorem 9, we have wop[b1,...,bk]
(123) = Ck, which implies that for any Dyck path of

size n with k columns that are either of size one or of size two, we can find Ck parking functions
on the Dyck path. It is not difficult to enumerate that the number of Dyck paths of size n with k

columns that are either of size one or of size two is
(nk)(

k
n−k)

n−k+1 . Thus

pfn,k(123) =
Ck

n− k + 1

(
n

k

)(
k

n− k

)
.

Summing over all possible pfn,k(123) gives the formula for pfn(123).
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7 Open problems

In this paper, we mainly use the classical recursion of 132-avoiding permutations and the Dyck
path bijection of 123-avoiding permutations to prove results on the generation functions tracking
several statistics of ordered set partition that word-avoid some patterns of length 3. Our definition
of word-avoidance of an ordered set partition differs from pattern avoidance defined by Godbole,
Goyt, Herdan, and Pudwell [4]. Notwithstanding, our definition of 321-word-avoiding ordered set
partition coincides α-avoiding ordered set partition in the sense of [4] for any pattern α ∈ S3.

Due to this coincidence, we spent a lot of pages on the problems on the set WOPn(321) of ordered
set partitions word-avoiding 321. In Section 3, we solve all the generating functions tracking
the statistic descents about WOPn(α) for any pattern α of length 3, and obtain many beautiful
symmetries and multinomial formulas with multinomial coefficients. However, the enumeration for
wop[b1,...,bk]

(321) = op[b1,...,bk](321) and wop〈bα11 ...b
αk
k 〉

(321) = op〈bα11 ...b
αk
k 〉

(321) are still open. As a

first question, an explicit formula of wop〈bα11 ...b
αk
k 〉

(321) is desired.

In Section 4 and Section 5, we get nice result about all the generating functions tracking the
statistics mindes and pdes, except that we do not have any result about WOPpdes

123 (x, y, t). In
particular, we have polynomial equations about the generating functions WOPmindes

321 (x, y, t) and

WOPpdes
321 (x, y, t) stated in Section 4.5 and Section 5.3, which still make sense when using pattern

avoidance definition in the sense of [4]. The polynomial equations have all the information of the
generating functions, and one can come up with efficient recursions easily with the equations. The
open problem in this part is the function WOPpdes

123 (x, y, t). We are not able to get recursions about

WOPpdes
123 (x, y, t) since the pdes statistic changes abnormally at the action lift.

We mentioned pattern avoidance problems about parking functions in Section 6. There is a great
number of interesting problems about enumerating parking functions, and all pattern avoiding
problems except the formula for pfn,k(123) are open.
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