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Ran Pan’s Project P PI‘OjeCl‘ P

http://www.math.ucsd.edu/~projectp/

Problem 13: enumerate permutations in S, avoiding a classical pattern
and a consecutive pattern at the same time.

Then Professor Remmel conducted researchs on distribution of classical
patterns and consecutive patterns in S,(132) and S,(123).
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© Introduction
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Permutations, Descents, LRmins

@ A permutation o =071 ---0, of [n] ={1,...,n} is a rearrangement of
the numbers 1,..., n.
@ The set of permutations of [n] is denoted by S,.

@ o; is a descent if 0; > 0;41. des(o) is the number of descents in o.

e We let LRmin(c) denote the number of left to right minima of o.
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Inversions, Coinversions

(0i,0;) is an inversion if i < j and o; > oj.

inv(c) denotes the number of inversions in o.

(0i,0)) is a coinversion if i < j and 0; < 0.

coinv(o) denotes the number of coinversions in o.
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Reduction of A Sequence

Given a sequence of distinct positive integers w = wy ... w,, we let the
reduction (or standardization) of the sequence, red(w), denote the

permutation of [n] obtained from w by replacing the i-th smallest letter in
w by i.

If w = 4592, then red(w) = 2341.
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Classical Patterns Occurrence and Avoidance

@ Given a permutation 7 = 71...7; in §;,

@ we say the pattern 7 occurs in ¢ = 01...0, € S, if there exist
1<i <--- < i < nsuch that red(a,-l...a,-j) =T.

@ We let occr, (o) denote the number of T occurrence in o.

@ We say o avoids the pattern 7 if 7 does not occur in o.
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@ Given a permutation 7 = 71...7; in §;,

@ we say the pattern 7 occurs in ¢ = 01...0, € S, if there exist
1<i <--- < i < nsuch that red(a,-l...a,-j) =T.

@ We let occr, (o) denote the number of T occurrence in o.

@ We say o avoids the pattern 7 if 7 does not occur in o.

m = 867932451 avoids pattern 132, contains pattern 123. occrios(m) = 2
since pattern occurrences are 6,7,9 and 3,4, 5.
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Classical Patterns Occurrence and Avoidance

@ Given a permutation 7 = 71...7; in §;,

@ we say the pattern 7 occurs in ¢ = 01...0, € S, if there exist
1<i <--- < i < nsuch that red(a,-l...a,-j) =T.

@ We let occr, (o) denote the number of T occurrence in o.

@ We say o avoids the pattern 7 if 7 does not occur in o.

m = 867932451 avoids pattern 132, contains pattern 123. occrios(m) = 2
since pattern occurrences are 6,7,9 and 3,4, 5.

@ 7 is called a classical pattern.

@ inversion — pattern 21, coinversion — pattern 12.
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Sn(o)

@ We let Sp(\) denote the set of permutations in S, avoiding A.

o [Sn(132)| = |8,5(123)| = C, = 2 (%), the nth Catalan number.

@ C, is also the number of n x n Dyck paths.

o Let A={A1,..., A/}, then S,(A) is the set of permutations in S,
avoiding A1,..., A,




Our Problem

Given two sets of permutations A = {A1,...,\;} and I = {71,...,7s}, we
study the distribution of classical patterns 71, ...,7s in Sp(A).

Especially, we study pattern 7 distribution in S,(132) and S,(123) in the
case when 7 is of length 3 and some special form.




Generating Function

We define
QN(t, x1,...,xs) =1+ Z t"Q,I;A(Xl, Cey Xs),
n>1

where

r § occry, (o) occry (o
Qn,/\(Xla'-‘yxs) - X]. " <t Xs ’Ys( )
a€Sn(N)

Especially, we have

Qt,x) =1+ t"Q),(x) and Q) (x)= Y x°°n(),

”21 UGSn()\)
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© Wilf-equivalence of Q](t, x)
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Wilf-equivalence

Given a permutation o, we denote the reverse of o by ¢”, the complement

of o by o€, the reverse-complement of o by ¢, and the inverse of o by
-1

o .

Let 0 = 15324, then
0" = 42351, o€ = 51342, o' = 24315, o1 = 14352.




Wilf-equivalence

@ 5,(123) is closed under the operation reverse-complement.
e Both §,(123) and S,(132) are closed under the operation inverse.

Thus,

Given any permutation pattern +y,

Qla(t, x) = Qlog(£,%) = Qo (£,%),  Qlp(£,%) = Qs (£, ).
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Wilf-equivalence

When we let « be a pattern of length 3,

Corollary

There are 4 Wilf-equivalent classes for S,(132),
(1) @35(t,x),

(2) Qf53(t, %),

(3) Q35;(t,x) = Qf33(t. x),

(4) Q% (t,x)

9 ’

and there are 3 Wilf-equivalent classes for Sp(123),
(1) Qi33(t,x) = QE3(t,x),

(2) Qf%5(t,x) = Q5(t. x),

(3) Q35(t,x).
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@ Recursions of Q) (t,x)
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Method — Using Dyck Path Bijections

We use Dyck path bijections to calculate the recursive formulas for

Q) (t,x).

Krattenthaler ¢ : 5,(132) — D,, Elizalde and Deutsch V : S§,(123) — D,,.
9 9




Method — Using Dyck Path Bijections

Then, we the recursion of Dyck path by breaking the path at the first
place it hits the diagonal to break it into 2 Dyck paths.

Let D(x) be the generating function enumerating the number of Dyck
paths of size n,

D(x) =1+ xD(x)>.




Counting Length 2 pattern in S,(132)

We first consider permutations that are avoiding 132 and the distribution
of pattern of length 2, i.e. inv and coinv.

We let

@n(q) = Qn 132( )= Z qcomv(g)

0E€SK(132)

Qt,q) = Qi%(t,q) =1+ Z t" Z g,

n>1 €S, (132)

and Pn(P, q) _ Z pinv(o)qcoinv(a)‘
o€Sn(132)

I




Counting Length 2 pattern in S,(132)

We first consider permutations that are avoiding 132 and the distribution

of pattern of length 2, i.e. inv and coinv.

We let _
@n(q) = Qn 132( )= Z qcomv(g)

0E€SK(132)

Qt,q) = Qi%(t,q) =1+ Z t" Z g,

n>1 €S, (132)

and Pn(P, q) _ Z pinv(o)qcoinv(a)‘
o€Sn(132)

I

Since inv(o) + coinv(o) =
Pn(p, q) and Qn(q),

(g) we have the following relation about

p

Papa)= 3 p(B)=coinv(o) geoinv(a) _ ,(5) @ <q>‘

0€5,(132)




Counting Length 2 pattern in S,(132)

Qn(q) — g-Catalan number.

Theorem (Fiirlinger and Hofbauer)

Let Qn(q) = n132(q) and Q(t,q) = Qi3,(t,q), then we have the
recursions,

n

Qu(q) =1, Qn(q) = _ ¢" " Qu1(q) Qnr(9),

k=1

Po(q) =1, Pn(q) = qu(" I Pi_1(q)Po_k(q),
and we have the functional equation,

Q(t,q) =1+ tQ(t,q) - Q(tq, q).




Counting Length 3 pattern in S,(132)

We let Q,A,/’132(q7x) = desn(lg,z) qCOinV(U)Xoccr“’(g), then we have the
following recursive equations for the generating function 037132(q, X).

@132(q,x) = 1 for each pattern 1, (4)

Q%21%2(q7 ) - Zqkilefl(qxax)ank(q7X)7 (5)
k=1

Q2(q.%) = Zq“ Qa2 %) Qn-k(9,%), (6)

Q5a(a,x) = Zqk_lx(k_l)("_k)Qkfl(qx("_k),X)ank(qyx), (7)

k=1

_ (n—k)(kn—4k+2) q q
0321132(% x) = qu Ix 2 Qk—l(W,X)Qn_k(g,X).@)

k=1




Track all patterns of length 2 and 3 in §,(132)

We can also track all the patterns that

12,21,123,213,231,312,321
Qn,132 (x1, X2, X3, X4, X5, X6, X7)

_ k—1_k
= X1 X

k=1

(n=k)  =1) (=)

Q ( (n—k) (n—k)
k—1\X1X3Xg y X2 X4 X7 7X37X47X5’X67X7)

'Qn—k(X].X(IS(7X2X7k7X3;X4aX55X67X7)- (9)
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Track all patterns of length 2 and 3 in §,(132)

12 21 123,213,231,312,321

Expansion of Q.5 (x1, X2, X3, X4, X5, X6, X7)

221,123,213 231,312,321
Qn.132 (X17X27X31X47X57X6,X7)

AW NN OIS

1
1
X1+ X2
X3x7 + xExaxs + X2xax6 + X1X2Xq + X3
1X7 1 X2X5 1X2X6 1Xp X4 2 X3
X16x§ + Xfx2x§x72 + x15X2X5X6x72 + xfx2x§x72 + XfX22X4X52X7 + xfx22X4x62X7 + xfx%xszxg
4

—',-x1 x2 X3X5 + x1 x2 X3X6 + x1 X2 X4 X7 + x1 x2 X3X4 X5 + x1 x2 X3x4 Xﬁ + x1x2 X3 x4 + x2 X3
X110X710 + Xl x2x5 x7 + X7 X2X52X6X7 + X1 X2X5X6 x7 + Xl x2x6 x7 + Xl x2 X4X5 x7 + X1 X3 X4X52ng§r’
+X1 X22X4X6 X7 + xfxgxéxgxé + X{3X22X53'x63x;t + xfx%xgxéxé + X1 X5 X3x56x7 + X1 x23X3X53X63'X73
""Xl x2 X3X6 x7 + X1 xfxfx_gxf,1 + X1 X23x3’x6 X7 + X1 X23X4X5 X5 x7 + Xfx%)qxéxéx—% + X1 x2 X3X4 X55x72
+x16x§X3foéx6x72 + xl x2 X3X} X5XéX72 + X16X2 X3X4 x6 X7 + x1 x2 X3X5 X6 + x1 X5 X3X53X66
+xfx§xfx§ + xfxgxgxfxg’m + X15X25X§X$X65X7 + X7 X§X3XEX5 x7 + X7 X§X3X2X5X6X72
+XfX§X3X[?X62X72 + xfxgxé‘xg + X1 X2 X3 X6 + x1 x2 x32x;?X52X7 + X1 X3 X32x4ng7 + xfxgxgxfxgxg
+X1 X2 X3 x4 x5 + X7 x27><§'x4 X5 + x1 X x33x4 x7 + x1 Xy x::?x4 X5 + x1 X xé:’x4 X6 + X1X2 X3 x4 + x210x310
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Counting Length 3 pattern in S,(132)

We also get nice recursions for pattern distributions in S,(123). For
example, we have

Theorem

Let Ql 123(5 q,x) = Zaesn(123) sLRmin(a)qcoinv(a)xoccrm(a)’ then we have
the fo//owmg recursions,

Qias(s.a,x) = 1,

Qr];%l,223(5 q,Xx ) = sQn—l + Z Qk—l(sq7 ax, X)Qn—k(sa q,X)-

k=2




An equality between S,(132) and S,(123)

We get nice recursions and functional equations for the function counting
pattern 12---m in S,(132) and the function counting
pattern Im(m —1)---2 in §,(123), for any m > 1.

We found a big coincidence among S,(132) and S,(123) that,

{o € §5(132) : occria...j(0) = i}| = [{o € Sn(123) : occryj(j_1)..2(0) = i},

for all i < j.




An equality between S,(132) and S,(123)

This result is described in the following theorem.

We let
_ ocCcCri2 ,0cCCr 23 ocCr ...
Qn,132(X25X37"'7Xm)_ E X5 ! X3  Xm 12 )
0€5,(132)
n
Qu32(t, X2, X3, . . ., Xm) = E t"Qn132(x2, X3, ..., Xm) and
n>0
LRmin _occrip occr OCCrm(m—1).--2
Qn,123(5, %2, X3, . . ., Xm) = E s Xy Xy R X ,
0€8,(123)
n
Qu23(t, 8, X2, X3, . . ., Xm) = E t" Qn,123(5, X2, X3, . . ., Xm),
n>0
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Theorem

then we have the following equations,
Qn,132(x2, . . -, Xm)

k—1
= ZLl X5 Qk—1,132(X2X37 X3X4, -« oy Xm—1Xm, Xm)ank,132(X27 cee 7Xm)>

Qn,123(S, X2, - . ., Xm)
= SQn—1,123(t7 S, X2, ... 7Xm)
+ > o Qu_1.123(5%2, X0X3, X3Xa, -

<y Xm—1Xm, Xm)Qn—k,123(S)X27 .. 7Xm)7

v
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Theorem

also the functional equations,
Qu32(t, X2, - - - s Xm)
=1+ Qu32(tx2, X2X3, X3X4, - - -, Xm—1Xm; Xm) @132(t, X2, - - -, Xm),

Q123(t,5,X2, °00 aXm) =1+ t(S - 1)0123(t7 S, X2,... ’Xm)
+tQ123(t, SX2, X2X3, X3X4, - - -, Xm—1Xm; Xm) @123(S, X2, - - -, Xm).-
Further, let [x']g denote the coefficient of x' in function Q, then

[tnX:J"]an = [tnX_/i]Qua for i <. (10)
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Other Results and Open Problems

@ We obtained the recursion tracking all patterns of length< 4 on
Sn(132), see that every pattern is trackable on S,(132).
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Other Results and Open Problems

@ We obtained the recursion tracking all patterns of length< 4 on
Sn(132), see that every pattern is trackable on S,(132).

e On §,(123), we only track patterns of length 2 and 3 and the special
pattern 1m(m — 1)---2. A simpler recursion on S,(123) is desired.

@ We adapt our method to circular permutations. We track all circular
patterns of size< 4 on circular permutations avoiding circular pattern
1243.

o There are other equality of coefficients of generating functions Q5,
and Q55 except equation (10) which we can study in the future.

@ We only studied classical patterns on S,(132) and S,(123), and
circular patterns on 1243,




Thank Youl
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